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VEHICLE DYNAMIC ANALYSIS WITH FLEXiIBLE COMPONENTS*

Sang Sup Kim, Ahmed A. Shabana, and Edward J. Haug
Center for Computer Aided Design
College of Engineering
The University of Iowa
Iowa City, Iowa 52242

/

ABSTRACT.:—{’;A method is presented for nonlinear, “ransient dynamic
analysis of vehicle systems that are composed of interconnected rigid and
flexible bodies. The finite element method is used to characterize
deformation of each elastic body and a component mode technique is employed to
reduce the number of elastic generalized coordinates. Equations of motion and
constraints of the coupled system are formulated in terms ¢f a minimal set of
modal and reference generalized coordinates, A Lagrange multiplier technique
is used tc account for kinematic constraints between bodies and a generalized
coordinate partitioning technique is employed to eliminate dependent
coordinates. The method is applied to a planar truck model with a flexible
chassis and nonlinear suspension components, Simulation results for transieat
dynamic response as the vehicle traverses a bump, including the effect of
bump-stops, and random terrain show that flexibility of the chassls can be
routinely accounted for and predicts significant effects on vibratory motion
of the vehicle. Compared with a rigid body model, flexibility of the chassis
increases peak acceleration of the chassis and induces high frequency vertical

acceleration in the range of human resonance, which deteriorates ride quality
of off-road vehicles. <
‘/

1. INTRODUCTION. Modern, lightweight, off-road vehicle systems,
operating over rough terrain, have placed increasingly higher demands on the
technology required to accurately wmodel and predict dynamic response of a
vehicle system. In order to predict dynamic performance of a vehicle, it is
necessary to consider nonlinear suspension kinematics and forces, coupled with
elastic deformation of the vehicle chassis. Accurate description of vehicle
dynamics; e.g., ride comfort and precision of armament subsystems, requires a
high resolution mathematical model that accounts for flexibility effects and
their coupling with geometrical and suspension force nonlinearities. This is
mainly due to the large number of degrees-of-freedom required to model vehicle
components and the high degree of geometrical nonlinearity associated with
gross motion of suspension components and force-displacement nonlinearity
associated with suspension bump-stops. When rlexihbility is considered, the
problem becomes even more difficult, because of the increasing dimensionality
and high frequencies of natural vibration.

Some investigators [l1-2] have considered flexibility of vehicle
components. Thelr method of analysis is based on a linear theory that has
been employed to analyze mechaanisms with flexible members [3-5]. In this

*Research Supported by Project No. DAAG29~-82-K-0086 U.S. Army Research Offlice.
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analysis, elastic deformation is assumed to have no significant effect on
gross motion. Gross motion is first determined, using rigid body analysis and
the resulting inertlia and reactioti forces are intioduced in elastic analysis
of the components. The total motion of the elastic member 1is then obtained by
superposition of small deformation on gross body motion. There is, however,
an increasing demand to produce lighter weight vehicular cowmponents that
operate at higher speeds. Linear theory assumptions are no longer accurate
enough to represent system dynamics, since flexibility effects can
significantly affect motion at the driver's station,

Sunada and Dubowsky [6] recently presented a method for the dynamic
analysis of flexible mechanisms that couples flexible degrees of freedom with
a geometrically nonlinear set of equations of motion. Existing finite element
structural programs are combined with a 4x4 matrix dynamic analysis
technique, The method has been applied to analyze spatial mechanisms and
robotic manipulators. The capability of this method to treat applications .
such as vehicle systems and space structures without substantial ad-hoc R
formulation, is not clear. Further, this method neglects rotary inertia of
mass that 1s lumped at individual grid points, in order to avoid the .
difficulty of using a ccnsistent mass approach to represent inertia coupling
between the rigid body motion and the clastic deformation. z

Shabana and Wehage [7-8] presented a uethod for dynamic analysis of large
scale inertia-variant flexible systems with coupled reference and elastic
deformation. Each flexible body 18 represented by two sets of generalized
coordinates. The first set defines the location and orientation of a body-
fixed coordinate system that is rigidly attached to a point on the flexible
body. GSecound, elastic generalized coordinates characterize small deformation
relative to the body=-fixed system. This set of coordinates 1s introduced
using the finite element method of structural analysis. Modal analysis is
employed to reduce the number of elastic degrees of freedom, hence reducing
problem dimensionality to manageable extent.

The purpose of this paper 1s to adapt the automated analysis method of

Refs 7-8 for coupled dynamic analysis of planar vehicle systems that are
composed of rigld and flexibie bodies. As a numerical example, a cross
country truck 1s considered in which the chassis is flexible., This
investigation is mainly concerned with analysis of the effect of chassis
flexibility on dynamic response of the vehicle, over a single bump and random
terrain. A rather simplified tire model is ugsed in this study. Extension of ; »
the formulaticn presented and {llustrated here to include a more realistic CEACREe

tire model and three dimensional structural vibration [9] is theoretically ;f:%:i:
simple but involves more detalled calculations than are presented here. }ﬁ*}\;

To achleve the above goals, the DADS computer program {s used to
automatically generate equations of wotion, using a Lagranglan formulation,
The system equations of motion are solved numerically using a direct
integration method and advantage is taken of sparsity of the matrices arising
in the formulation, As 1is shown, this automated formulation 1s general and
! conserves manpower that would be required in ad-~hoc wodel formulation and
; analysis.
\

126

e T
D
’
-
.
‘
¢
.fn
L
s
H
'
o
v
.
]
v
«




kx S
P [N
-
b 2, VEHICLE AND ROAD SURFACE MODELS.
. 2.1 Vehicle Model. The vehicle used in this investigationm is a 5 tom, T
p cross country truck [10] with rigid axles and a Wett mechanism independent e
. suspension. Figure ! shows the genmeral configuration of the truck. Figure 2 e
j'.'c: illustrates the wheel sugpeunsion, with two suspension support arms beneath the o
: axle and two arms above. Vertical forcer are supported by coil springs of e
v progressive stiffness. Figure 3 1s an overall view of the frame, which BN
. consists of two sidemembers (closed box griders) and several tubular ens
crossmembers that are mounted in holes in the sidemembers and welded to their §Te
ianer and outer sides., Vehicle parameters used in this analysis are given in R
Table 1. A

Table 1 Vehicle Parameters

Parameter Value
Gross Vehicle Mass 14,400 kg
(including payload)

Vehicle Sprung Mass 11,950 kg ,~_\-t.-_
o RS LH
Y Vehicle Unsprung Mass 2,450 kg .:_::_*.
~ e
}.» Front axle 1185.0 kg DN
o Rear axle 1185.0 kg NN
Long trailing arms 44.8 kg E:Emf‘
N Short trailing arms 35.2 kg L
Pitch moment of ilnertia of sprung mass 58300.0 kg—m2 f'_-:::-‘:]
(about C.M.) DS
Front and Rear Suspension .
e
n i Spring rate (per spring) 6.91x107 N/m t\’;
P | . wat
v Damping rate (per shock absorber) ""\-
Y4 DATCACS
t;‘ Compression 5480.0 N.sec/m o
" Rebound 17575,0 d.sec/m Lot
. Wheel Travel (unloaded) S
o~ Jounce 0.15 m RO
" Tire Quadratic Spring Constant (per tire) 5.649x107 N/m? ;I::"Ef.'
f“ Damping rate (per tire) 4625.0 N,sec/un P._*E_‘
T Tire Radius 0.6 m e
'C; Vertical Natural Frequency of Sprung Mass 1.98 Hz :‘“:
[} -\'-\\-
Sprung Pitch Natural Frequency 1.95 H= N,
X RN
E‘s Kervwml
W N
L \‘--“u\
"-I \""\-"
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T
- A simplified, planar rigid body truck model is shown in Fig. 4. Bodies 1 AR
. and 2 are the front and rear axle-wheel assemblies, respectively. Each axle- S
. wheel mass is assumed to be concentrated at the wheel center. Body 3 is the e
l chassis of the truck. The mass of the chassis includes masses of the payload ;;f!
- and engine. Bedy-fixed coordinate axes are located at the centroid of each e
- body. Bodies 4, 5, 6 and 7 are the trailing arms that connect the chassis and '{}}ﬁ
> wheel assemblies by revolute joints. The function of these trailing arms is RN
; to provide kinematic control nf the axle position and to absorb driving and Ve
Do braking torques acting on the wheels. Therefore, they are modeled as a Watt's Sl
i mechanism, which gives very small rotation to the axle during vertical o
- displacement. Rigid body data and the initial location and orientaticn of the R

body-fixed coordinate systems of each body, with respect to the inertial
reference frame, are given in Table 2.

T

The suspension springs and dampers and the tires are modeled by springs
and damperz, as shown in Fig. 5. Spring charactarigtics of the tires are
taken here as quadratic functious of displacement. A simple point contact
tire model 18 used to simulate tire forces that occur due to motion of the
wheel relative to the road surface, Fore-and-aft force components are
neglected, assuming the tire force 1s always vertical. The tire is free to
leave the grouand, to simulate wheel hop. Nonlinear spring and damping
characteristics of suspension elements are given in Fig., 6. The high
stiffness of the suspension spring in compression, when the spring deflection
18 greater than 0.15 u, simulates the bump-stop in the suspension system.

A rigid body vehicle model of this vehicle, with five degrees—of-freedoam
(5~DOF), 18 also formulated to allow evaluation of the effects of chassis

LaNC A S S B
AT

P2 1 S PP AR N Y VIR

flexibility. e |
Table 2 Rigid Body Data and Initial Positions f ;

' Body No. Mass (kg) Moment of Inertia Initial Body Coordinates

l about C.G. (Kg-m*) X{m) y(a) $(rad)

™

> -

N 1 1185 13.33 1.500 0.575 0.0

N 2 1185 13,33 5.850 0.575 0.0

i 3 11950 58300 3.675 0.975 0.0

2 4 22,4 2,38 2.116 0.725 0,464

- 5 22.4 2.38 5.234 0.725 -0.464

2 6 17.6 1.14 1.066 0.909 -0, 1564

> 7 17.5 l.14 6.284 0.909 0.154

i

. W .t'\

Q 2.2 Road Surface Models., The dynamic response of a vehicle depends i;f:{:

8 strongly on the vertical displacement history of the wheelc on the road CoALs

. surface. In this investigation, two roadway models are used, as shown iu :;'-f

i Fig., 7. Figure 7(a) represents a simulated obstacle with 0.2m helight and 0.4m A .

A
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Fig. 4 Rigid Body Truck Model
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width, which 1s used to simulate shock response of the vehicle over a single
bump. Figure 7(b) 18 a terrain profile with a RMS roughness of 2.64cm (1.04

in) and a length of 91.44m (300 ft).

3. ANALYTICAL APPROACH, The analysis method employed in this
investigation 1s similar to the method used in Refs., 7-8 to analyze mechanical
aystems with interconnected rigid and flexible bodies. In this method, the
chassis of the vehicle 18 considered as a deformable substructure. Two sets
of generalized coordinates are employed to describe the flexible body
configuration. First, reference generalized coordinates define the location
and orlentation of a hody-fixed coordinate system on each body. Second, a set
of elastic coordinates define small deformation of each body, relative to its
body~-fixed coordinate system. This set 18 introduced using the finite element
method.

Kinetic and strain energy expressions are developed for the individual
elements. The kinetic and strain energy of each body are obtained by sumuing
energies of its elements. Constraints between different elements of a body
are expressed in a Boolean form and constraints between different bodies are
introduced using a Lagrange multiplier technique. The generalized coordinate
partitioning method [l1] and a component mode structural analysis technique
are employed to describe the system equations of motion, with a8 minimal set of
independent generalized coordinates [7,8]. The method of Refs. 7 and 8 1is
summarized here, for completeness.

3.1 Energy Expressions. Figure 8 shows a typical element j of a two
dimensional planar flexible body i. Let the x-y coordinate system represent
an inertial reference frame and the xi-yi system represent a coordinate system
that is rigidly atrached to body 1.

The location of an arbitrary infinitesimal volume at point piJ on element
J can be defined as

g o rt 4 Al M (1)
w — —

where R1 - [xi,yi]T is the vector of translational coordinates of the origin

of the coordinate system of body 1 with respect to the x-y system,

cosb -gind

sinﬁi coae1

is the transformation matrix from xi-y1 to x-y coordinate systems, and.E?J is

the position vector of pij with respect to the xi-y1 system, defined as
£13 - Eéj +Eij (3)
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where Eéj is the position vector of pij in the undeformed state and E}J is the
elastic displacement vector in the body fixed coordinate system. Let an
xij-yiJ coordinate system be attached to the left end of element j. Using a
shape function,‘zfj can be expressed in terms of nodal coordinates

1]

& (k = 1,2,,.6), which represent nodal coordinates and slopes of reference

lines at nodes, relative to the xi-yi system,

£ o yideld (4)

where Nij is the element sha- function.

From Eq. 1, the position vecvor RiJ can be expressed [(7-8], in terms of
reference coordinates (xi,yi, 61) and nodal coordinates (E}J), as

M . gt 4 alytdeld (s)
—p
Differentiating Eq. 5 with respect to time gives

(RS SRS SR “

where

it .t I:-sinei -cosei]

coeai -sinei

(7
- 81417
Substituting Eq. 7 into Eq. 6 and writing the result in partiticned form
ylelds
/éi)
Rl o r ATl Al ) ot (8)
P = .
i3
e
The kinetic energy expression for element 1j is given by
13 1 13 -1JT o1y . 14
TV == R R - dv'-
2fvi.1 S S
1 -1JT i3 +1j
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where vid is the element volume, pij is density of the element material,
T T T
g =g etet ) (10)

are the generalized coordinates of element 1j and M) i the element mass

matrix [7-8]. The vector eij can be written as

g?j = e 13 + ﬂf (11)
where géj is the vector of nodal ¢ -:dinates in the undeformed state and 3;3

is the vector of deformations at the nodes, defined with respect to the body-
fixed coordinate system.

The total kinetic energy of body i 1s given by

ni
ma ¢ 4
i=1
T
% o1 M:l é.i (12)

T T T
i i i 1 i i i i
where ¢ = [ R™ @ [ ] = 9 - ], q,» and g; represent,
respectively, reference and elastic coordinates of body i. The strain energy
of bedy i can also be expressed in compact form as [7-8]

1
U --ES. KS' (13)

i

where K" is the stiffness matrix of body 1.

The virtual work of external forces acting on body 1 can be written as
T
oWt = ' 6g, (14)

where_gf is the vector of generalized forces assoclated with the generalized
coordinates of body 1.

3.2 Equations of Constraint. When adjacent bodies are connected,
nonlinear constraint equations are written between adjacent bodies and a
Lagrange multiplier method 1s employed to adjoin these constraint equations to
the equations of motion. These constraints permit the jolning of elastic
bodies, rigid bodies, or rigid and elastic bodies. Polints of attachment on
elastic bodies are at nodes of the finite element model. In general,
equations of constraint can be written, in vector function form, as
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#(g,t) = 0 (15)

where O(q,t) - [ ¢l(q,t),...,¢m(q,t)]T. This 1is a set of nonlinear algebraic

equations, which can be usad to describe constraints between vehicle
couponents,

3.3 Equations of Mction, The composite vector of all system generalized
IT 2T NT,T
coordinates 1s designated as q = [q , ¢°. **ee q ] , where N is the total
number of bodies {substructures) in the system. The constraint equations of
Eq. 15 are assumed to be independent. Presuming that the constraints are
workless, the variational form of the equations of motion [12] for body 1,
where subscript notation denotes differentiation with respect to a vector, is

d .4 1 4T 4
F o, o-T, ¢ -9 sgtmo (16)
1 1 S

for all virtual displacements 63} that are consistent with constralnts of Eq.

15. It can be shown that introducing the vector A? 9 . into Eq. 16 allows the

i —ai
coefficients of g to be set to zero [13]. Thus,
T T T
d 1 i i i T
E'E'T-i -Ti + Ui -Q +lil-0 (17)
1 1 9 9

with ™, vl, and o given by Eqs. 12, 13, and l4s

3.4 Generalized Coordinate Reduction. Efficient solution of the system
equations of motion requires a transformation from the space of system nodal
generalized coordinates to the space of system modal generalized coordinates,
which has lower dimension., The method presented in Refs 7-8 1s based on
solving the eigenvalue problem for each substructure once. From Fourier
analysis of the forcing functions, an initial estimate of the number of modes
to be retained is made. During the simulation, additional eigenvectors are
recalled or deleted, as required. For the purpose of determining eigenvalues
and eigenvectors, if a substructure is assumed to vibrate freely about a
reference configuration, Eq. 17 yields

=1 i

-1 =1
Mff gf + Kff gf =0 (18)

Where ﬁtf and E;f are the mass ind stiffness matrices associated with the
nodal generalized coordinates and E; is the vector of elastic coordinates
after imposing the body-fixed coordinate conditions. The stiffness

matrix E;f 18 positive definite, because the reference coordinate system is

fixed. Equation 18 ylelds a set of eigenvectors and a modal matrix. A
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where B; is the modal matrix, consisting of the elgenvectors obtalned from Eq.

18 and x} is a vector containing the modal coordinates. Using Eq. 19, the ‘F"
reference and nodal generalized coordinates are written in terms of reference

and modal coordinates. A substantial reduction in problem dimensionality can

be achieved by considering only significant modes.

4. NUMERICAL RESULTS. In order to take the effect of flexibility of
vehicle components on global vehicle motion into account, the chassis (Body 3)
and long trailing arm (Body 4) are modeled as elastic bodies. The chassis and
long trailing arm are divided into 12 and 2 finite beam elements,
regspectively, with reference coordinates located at their midpoincs. The
flexural rigidity of each flexible member is calculited using the cross-
sectional area of the beam and its material properties. Lateral and axial
defcrmation are considered.

The flexible components are initially treated as substructures that are
fired at their midpoints. Since each beam element has 6 degrees~of-freedonm,
the flexible chagssis has a total of 36 elastic degrees-of-freedom and each
flexible link has 6 elastic degrees-of-freedom. The eigenvalue problem is
solved for each of these substructures. The lowest six natural frequencies of
the flexible chassis are 6.11, 6.11, 38.31, 38.31, 83.36, and 83.36 Hz, where
the first four modes are bending modes and the fifth and sixth modes are axial
vibration modes. The lowest two natural frequencies of the flexible links are
88.92 and 88.92 Hz. Ome percent structural damping is considered for every
chassis mode of vibration.

4.1 Vehicle Response over Single Bump. The vehicle travels over the
single bump given in Fig. 7(a), with a vehicle speed of 3 m/sec (6.7
miles/hr)., The simulation is carried out for two vehicle models, rigid and
flexible chassis, to evaluate flexibility effects of the chassis on vehicle
motion. To compare higher mode effects of the flexible chassis model, 2~ and
4-~mode solutions are obtained., Figure 9 shows the vertical displacement of
the center of mass of the chassis, from its static equilibrium position. The
figure shows significant peak differences between vertical displacement of
rigid and flexlble chassis models. Figure 9 also shows that the contribution
of higher vibration modes to vertical displacement of the chassis 1is
negligible.

The vertical acceleration at the center of mass of the chassls 13 given
in Fig. 10, for each model, It siiows that chassis flexibility results in
increased peak acceleration and significantly higher frequency content during
passage over the bump. The effect of structural dawping on the vehicle
response is shown in Fig. 11. In this figure the vertical acceleration of the
chassis with and without damping are plotted. The damped response decays with
time, while the undamped response has a sustained oscillation.
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Computation time for the rigid model simulation was 7.0 minutes on a :’-}-:.-f
PRIME 750 supermini computer. Computation times with the two and four mode KRR
flexible chassis models were 2.08 and 5.18 times the computation time of the e

rigid model. This shows that computational efficency can be obtained by using LJ'!

the smallest number of modes required to obtain reasonable accuracy. .:.»"':

S

4.2 Vehicle Regponse over Random Terrain. Simulation is carried out . f':-::

over the terrain given In Fig, /7(b) for the rigid model, the two and four mode -::j-i:'_-.

flexible chassis models, the two mode flexible links model, and the two mode el

flexible chaasis aud links model. Vehicle velocity is 7.5 m/sec. (16.8 et

miles/h). Results are given in Figs. 12 to 1l4. Since link flexibility does :-'.';--f‘-‘

not have significant effect on the global vehicle motion, results for the R

model with flexible links are not included. i:-',:.-';.

Figure 12 shows vertical displacement at the center of mass of the _:_,_..

chassis, No significent difference 1is observed between rigid and flexibie ;‘-‘?«!l!

models. No significant difference hag been found between the two and four- N

mode solution of the flexible chassis models. It has also been found that RN

there is no significant difference in vertical chassis displacement between \j

the two mode flexible chassis and links model and the two mode flexible RN

chassis model. It is concluded that flexibility effects of the stiff link DN

(which has relatively high natural frequency) on the vehicle response may be m

neglected. i

~ I3

Figure 13 shows vertical acceleration at the center of mass cf the Fat iy

chassis. Flexibility of the chassis results in a significant increase in the SN

acceleration level at the center of the chassis and high frequeacy conteat ‘:ﬁ

near the resonant frequency of the human body. Vibration in the chassis may E:;::'

o thus result In an unpleasant motion and deterlorate ride comfort of the SR

. vehicle. Suspension link flexibility does not have noticeable effects on the R

o vertical acceleration of chassis. R

~ AN

E“:'\ Deflection of the front end of the chassis, with respect to its body- :_‘.“_‘.R

fixed coordinate system, is given in Fig. 1l4. Dynamic peak deflections for .;;,..,:

the two mode flexible chassis model {s 22 times the static deflection of that N

A model. The frequency of vibration of the front of the chassis 1is about 6 Hz, A

“3 which is the fundamental natural frequency of the chassis. ::-:ﬁ:
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