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ABSTRACT.. -PA method is presented for nonlinear, transient dynamic

•.analysis of vehicle systems that are composed of interconnected rigid and
flexible bodies. The finite element w-thod is used to characterize
deformation of each elastic body and a component mode technique is employed to
reduce the number of elastic generalized coordinates. Equations of motion and
constraints of the coupled system are formulated in terms of a minimal set of
modal and reference generalized coordinates. A Lagrange multiplier technique
is used to account for kinematic constraints between bodies and a generalized
coordinate partitioning technique is employed to eliminate dependent
coordinates. The method is applied to a planar truck model with a flexible
chassis and nonlinear suapension components. Simulation results for transient .

dynamic response as Lhe vehicle traverses a bump, including the effect of
bump-stops, and random terrain show that flexibility of the chassis can be

.routinely accounted for and predicts significant effects on vibratory motion
of the vehicle. Compared with a rigid body model, flexibility of the chassis
increases peak acceleration of the chassis and induces high frequency vertical
acceleration in the range of human resonance, which deteriorates ride quality
of off-road vehicles. ,

1. INTRODUCTION. Modern, lightweight, off-road vehicle systems,
operating over rough terrain, have placed increasingly higher demands on the
technology required to accurately model and predict dynamic response of a
vehicle slstevt. In order to predict dynamic performance of a vehicle, it is " -
necessary to consider nonlinear suspension kinematics and forces, coupled with ___

elastic deformation of the vehicle chassis. Accurate description of vehicle
dynamics; e.g., ride comfort and precision of armament subsystems, requires a
high resolution mathematical model that accounts for flexibility effects and
their coupling with geometrical and suspension force nonlinearities. This is
mainly due to the large number of degrees-of-freedom required to model vehicle
components and the high degree of geometrical nonlinearity associated with
gross motion of suspension components and force-displacement nonlinearity
associated with suspension bump-stops. When xlexibility is considered, the
problem becomes even more difficult, because of the increasing dimensionality
and high frequencies of natural vibration.

Some investigators [1-2]" have considered flexibility of vehicle L--
components. Their method of analysis is based on a linear theory that has
been employed to analyze mechanisms with flexible members [3-5]. In this
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analysis, elastic deformation is assumed to have no significant effect on
gross motion. Gross motion is first determined, using rigid body analysis and
the resulting inertia and reactioL, forces are intioduced in elastic analysis
of the components. The total motion of the elastic member is then obtained by
superposition of small deformation on gross body motion. There is, however,
an increasing demand to produce lighter weight vehicular components that
operate at higher speeds. Linear theor;, assumptions are no longer accurate
enough to represent system dynamics, since flexibility effects can
significantly affect motion at the driver's station.

Sunada and Dubowsky [61 recently presented a method for the dynamic
analysis of flexible mechanisms that couples flexible degrees of freedom with
a geometrically nonlinear set of equations of motion. Existing finite element
structural programs are combined with a 4x4 matrix dynamic analysis
technique. The method has been applied to analyze spatial mechanisms and
robotic manipulators. The capability of this method to treat application-
such as vehicle systems and space structures without substantial ad-hoc
formulation, is not clear. Further, this method neglects rotary inertia of
mass that is lumped at individual grid points, in order to avoid the
difficulty of using a consistent mass approach to represent inertia coupling
between the rigid body motion and the elastic deformation.

Shabana and Wehage [7-8] presented a method for dynamic analysis of large
scale inertia-variant flexible systems with coupled reference and elastic
deformation. Each flexible body is represented by two sets of generalized
coordinates. The first set defines the location and orientation of a body-
fixed coordinate system that is rigidly attached to a point on the flexible
body. Second, elastic generalized coordinates characterize small deformation
relative to the body-fixed system. This set of coordinates is introduced -"

using the finite element method of structural analysia. Modal analysis is
employed to reduce the number of elastic degrees of freedom, hence reducing
problem dimensionality to manageable extent,

The purpose of this paper is to adapt the automated analysis method of au..-u.-a

Refs 7-8 for coupled dynamic analysis of planar vehicle systems that are
composed of rigid and flexible bodies. As a numerical example, a cross
country truck is considered in which the chassis is flexible. This
investigation is mainly concerned with analysis of the effect of chassis
flexibility on dynamic response of the vehicle, over a single bump and random _." y.•"*.

terrain. A rather simplified tire model is used in this study. Extension of
the formulation presented and illustrated here to include a more realistic
tire model and three dimensional structural vibration [9] is theoretically ...
simple but involves more detailed calculations than are presented here.

To achieve the above goals, the DADS computer program is used to
automatically generate equations of motion, using a Lagrangian formulation.
The system equations of motion are solved numerically using a direct
integration method and advantage is taken of sparsity of the matrices arising
in the formulation. As is shown, this automated formulation is general and
conserves manpower that would be required in ad-hoc model formulation and
analysis.
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2. VEHICLE AND ROAD SURFACE M4)DELS.

2.1 Vehicle Model. The vehicle used in this investigation is a 5 ton,
cross country truck [10] with rigid axles and a Watt mechanism independent;
suspension. Figure I shows the general configuration of the truck. Figure 2
illustrates the wheel suspension, with two suspension support arms beneath the
axle and two arms above. Vertical forcer. are supported by coil springsl of
progressive stiffness. Figure 3 is an overall view of the frame, which
consists of two sidemembers (closed box griders) and several tubular
crosamembers that are mounted in holes in the sidemembers and welded to their

, inner and outer sides. Vehicle parameters used in this analysis are given in
Table 1. . ..

Table 1 Vehicle Parameters

Parameter Value

Gross Vehicle Mass 14,400 kg
(including payload)

Vehicle Sprung Mass 11,950 kg

Vehicle Unsprung Mass 2,450 kg

Front axle 1185.0 kg

Rear axle 1185.0 kg
Long trailing arms 44.8 kg
Short trailing arms 35.2 kg

Pitch moment of inertia of sprung mass 58300.0 kg-"
(about C.M.)

Front and Rear Suspension --- ft

Spring rate (per spring) 6.91x10 5 N/m f..* f"

Damping rate (per shock absorber) ,t.

"Compression 5480.0 N.sec/m

Rebound 17575.0 ri.sec/m

Wheel Travel (unloaded)

Jounce 0.15 m

Tire Quadr-atic Spring Constant (per tire) 5.649x10 7 N/m2  
.'.-

Damping rate (per tire) 4625.0 N.sec/m "-

Tire Radius 0.6 m-

Vertical Natural Frequency of Sprung Mass 1.98 Hz

Sprung Pitch Natural Frequency 1.95 Hz
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A simplified, planar rigid body truck model is shown in Fig. 4. Bodies 1
and 2 are the front and rear axle-wheel assemblies, respectively. Each axle-
wheel mass is assumed to be concentrated at the wheel center. Body 3 is the
chassis of the truck. The mass of the chassis includes masses of the payload
and engine. Body-fixed coordinate axes are located at the centroid of eachbody. Bodies 4, 5, 6 and 7 are the trailing arms that connect the chassis and -- '

wheel assemblies by revolute joints. The function of these trailing arms is
to provide kinematic control of the axle position and to absorb driving and
braking torques acting on the wheels. Therefore, they are modeled as a Watt's
mechanism, which gives very small rotation to the axle during vertical .
displacement. Rigid body data and the initial location and orientaticn of the
body-fixed coordinate systems of each body, with respect to the inertial
reference frame, are given in Table 2.

The suspension springs and dampers and the tires are modeled by springs

and dampers, as shown in Fig. 5. Spring characteristics of the tires are r'•O
taken here as quadratic functions of displacement. A simple point contact
tire model is used to simulate tire forces that occur due to motion of the

wheel relative to the road surface. Fore-and-aft force components are
neglected, assuming the tire force is always vertical. The tire is free to
leave the ground, to simulate wheel hop. Nonlinear spring and damping

characteristics of suspension elements are given in Fig. 6. The high
stiffness of the suspension spring in compression, when the spring deflection
is greater than 0.15 w, simulates the bump-stop in the suspension system.

A rigid body vehicle model of this vehicle, with five degrees-of-freedom
(5-DOF), is also formulated to allow evaluation of the effects of chassis
flexibility.

Table 2 Rigid Body Data and Initial Positions

Body No. Mass (kg) Moment of Inertip Initial Body Coordinates

about C.G. (Kg-m') X(m) y(m) *(rad)

.4 . -. *1=

1 1185 13.33 1.500 0.575 0.0
2 1185 13.33 5.850 0.575 0.0
3 11950 58300 3.675 0.975 0.0
4 22.4 2.38 2.116 0.725 0.464
5 22.4 2.38 5.234 0.725 -0.464
6 17.6 1.14 1.066 0.909 -0.154
7 17.6 1.14 6.284 0.909 0.154

2.2 Road Surface Models. The dynamic response of a vehicle depends
strongly on the vertical dijplacement history of the wheels on the road
surface. In this investigation, two roadway models are used, as shown in
Fig. 7. Figure 7(a) represents a simulated obstacle with 0.2m height and 0. 4 mr

129

-............

• ~~~~~~~~~~~.................. . - ,,. . .*...-...-.. .- .. . .- -. ".,- '-,• -..... - -



Y

Y3
,.'.,'.Y6 Y 2 Y7'..

Y "4 -- 7

"'N'•'i Fig. 4 Rigid Body Truck Model

-. -Center Line of Chaissfl. )i

.,. .'

Fig. 5 Suspension and Tire Model

Fe(N) F (N

K K

• """• •1 cr

a

SdCompression 
Rebound

CoFp ression SusRebsion adi M e

a.•_• 0 Ks - 1.382x 106N/i Kc - 35150 N~sec/m

1 cr

• -'" •K = 10960 N 's cc/ ni- .

cc

(a) Spring Characteristics (b) Damping Characteristics

_rl Fig. 6 Suspension Characteristics

* 130



C,

I-,

-N

0.0 ]0.0 20.0 30.0 40.0 50.0C 60. 0
BUMP LENGTH Cn,

Fig. 7(a) Single Bump Road Profile

CD

LJ c_

G'-2

tC,

1UMP L T I C

Fig. 7(b) Random Terrain dProfile

131



width, which is used to simulate shock response of the vehicle over a single
bump. Figure 7(b) is a terrain profile with a RMS roughness of 2.64cm (1.04
in) and a length of 91. 4 4m (300 ft).

3. ANALYTICAL APPROACH. The analysis method employed in this
investigation is similar to the method used in Refs. 7-8 to analyze mechanical
systems with interconnected rigid and flexible bodies. In this method, the
chassis of the vehicle is considered as a deformable substructure. Two sets
of generalized coordinates are employed to describe the flexible body
configuration. First, reference generalized coordinates define the location
and orientation of a body-fixed coordinate system on each body. Second, a set
of elastic coordinates define small deformation of each body, relative to its
body-fixed coordinate system. This set is introduced using the finite element
method.

Kinetic and strain energy expressions are developed for the individual
elements. The kinetic and strain energy of each body are obtained by summing
energies of its elements. Constraints between different elements of a body
are expressed in a Boolean form and constraints between different bodies are
introduced using a Lagrange multiplier technique. The generalized coordinate
partitioning method [11] and a component mode structural analysis technique
are employed to describe the system equations of motion, with a minimal set of
independent generalized coordinates [7,8]. The method of Refs. 7 and 8 is
summarized here, for completeness.

3.1 Energy Expressions. Figure 8 shows a typical element j of a two
dimensional planar flexible body i. Let the x-y coordinate system represent

an inertial reference frame and the xi-yi system represent a coordinate system
that is rigidly attached to body i.

The location of an arbitrary infinitesimal volume at point piJ on element
j can be defined as

R ij R + Airij ()

where is the vector of translational coordinates of the origin
of the coordinate system of body i with respect to the x-y system,

~. [ -sinoiiA. [cos csl (2)
LoinO coso

is the transformation matrix from xi-yi to x-y coordinate systems, and rij is

the position vector of piJ with respect to the x -yi system, defined as

rj J+ (3)
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where yo is the position vector of p'i in the undeformed state and w-J is the

elastic displacement vector in the body fixed coordinate system. Let an

xJ-y'J coordinate system be attached to the left end of element J. Using a

shape function, r_ can be expressed in terms of nodal coordinates

eJ(k 12...6), which represent nodal coordinates and slopes of reference(k
lines at nodes, relative to the x -yi system,

irj NiJeiJ (4)

where NlJ is the element sha- function.

From Eq. 1, the position veccor R can be expressed [7-8], in terms of

reference coordinates (xii,yi, ) and nodal coordinates (eJ), as

R Ri + AiN'jeij (5)
"-P -

Differentiating Eq. 5 with respect to time gives

R V- + Wi'JeiJ + AiN'Jeij (6)

I where

11i =i Fin -caosa 1 -"'-...-

LCosB -sine j (7"
'a~iAi"

Substituting Eq. 7 into Eq. 6 and writing the result in partitioned form ... "
yields

RiJ I [ AiN'jeiJ AiNj ]"

4, --p%"°:

The kinetic energy expression for element iJ is given by

i i ilT AU ~•':..-:
""Tij 1 i iiTi

,. -- , - . .- .
T .- P ij 4i

2= :(9) -
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where VJ is the element volume, pi- is density of the element material,

ij. [ • i _ij ] 0J:
S TT (10)

are the generalized coordinates of element iJ and MtJ is the element mass

matrix [7-8]. The vector eiJ can be written as

2 -i ..j

ii ij
where is the vector of nodal c-,:dinates in the undeformed state and

is the vector of deformations at the nodes, defined with respect to the body-
fixed coordinate system.

The total kinetic energy of body i is given by

i
Sn i

Ti Z Tij•:

.1 J1-

*1 T
i 1.i (12)

ST i iT T i T ii•

where I - IRJoi a , 42:5'r and •jrepresent,

respectively, reference and elastic coordinates of body i. The strain energy
of body I can also be expressed in compact form as [7-8]1j:•

U K' q (13)

where K is the stiffness matrix of body i. -'.

The virtual work of external forces acting on body i can be written as

T
• . ii 6L (14)

where Q, is the vector of generalized forces associated with the generalized
coordinates of body i.

AM
3.2 Equations of Constraint. When adjacent bodies are connected,

nonlinear constraint equations are written between adjacent bodies and a
Lagrange multiplier method is employed to adjoin these constraint equations to
the equations of motion. These constraints permit the joining of elastic
bodies, rigid bodies, or rigid and elastic bodies. Points of attachment on

elastic bodies are at nodes of the finite element model. In general,
equations of constraint can be written, in vector function form, as
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(.t)- 0 (15)

where O(q,t) - [ 1 (q,t) 9... (q,t) ]T. This is a set of nonlinear algebraic

equations, which can be used to describe constraints between vehicle
components.

3.3 Equations of Motion. The composite vector of all system generalized
IT 2T TT

coordinates is designated as - [ I • _ ] where N is the total
number of bodies (substructures) in the system. The constraint equations of
Eq. 15 are assumed to be independent. Presuming that the constraints are
workless, the variational form of the equations of motion [12] for body i,
where subscript notation denotes differentiation with respect to a vector, is

d I t +Td o Ti - - Q = 0 (16)
dt i i -- "I'

for all virtual displacements 6& that are consistent with constraints of Eq.

15. It can be shown that introducing the vector X T 1 into Eq. 16 allows the

coefficients of 6. to be set to zero [13]. Thus,

d T T T ' "
d- T -Ti + U I -_ + =X 0 (17)ýit ii i .I.

i

* with TK U', and Q' given by Eqs. 12, 13, and 14.

3.4 Generalized Coordinate Reduction. Efficient solution of the system
equations of motion requires a transformation from the space of system nodal
generalized coordinates to the space of system modal generalized coordinates,
which has lower dimension. The method presented in Refs 7-8 is based on
solving the eigenvalue problem for each substructure once. From Fourier
analysis of the forcing functions, an initial estimate of the number of modes
to be retained is made. During the simulation, additional elgenvectors are
recalled or deleted, as required. For the purpose of determining eigenvalues
and eigenvectors, if a substructure is assumed to vibrate freely about a
reference configuration, Eq. 17 yields

Mi -i--i--i.(18)

P +K P 0 (18)
fff ff -%f

Wee-i -i "''

Where M and K are the mass ind stiffness matrices associated with the
ff ff..-

nodal generalized coordinates and P is the vector of elastic coordinates

after imposinig the body-fixed coordinate conditions. The stiffness

matrix Kf is positive definite, because the reference coordinate system is
ff

fixed. Equation 18 yields a set of eigenvectors and a modal matrix. A
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coordinate transformation from the physical nodal coordinates to modal
coordinates is defined by

-i i iEf 4=B 2 x (19)

where B is the modal matrix, consisting of the eigenvectors obtained from Eq.2 
1

18 and & is a vector containing the modal coordinates. Using Eq. 19, the
reference and nodal generalized coordinates are written in terms of reference
and modal coordinates. A substantial reduction in problem dimensionality can
be achieved by considering only significant modes.

4. NUMERICAL RESULTS. In order to take the effect of flexibility of
vehicle components on global vehicle motion into account, the chassis (Body 3)
and long trailing arm (Body 4) are modeled as elastic bodies. The chassis and
long trailing arm are divided into 12 and 2 finite beam elements,
respectively, with reference coordinates located at their midpoints. The
flexural rigidity of each flexible member is calculated using the cross-
sectional area of the beam and its material properties. Lateral and axial S. .

deformation are considered.

The flexible components are initially treated as substructures that are
fixed at their midpoints. Since each beam element has 6 degrees-of-freedom,
the flexible chassis has a total of 36 elastic degrees-of-freedom and each
flexible link has 6 elastic degrees-of-freedom. The eigenvalue problem is
solved for each of these substructures. The lowest six natural frequencies of
the flexible chassis are 6.11, 6.11, 38.31, 38.31, 83.36, and 83.36 Hz, where
the first four modes are bending modes and the fifth and sixth modes are axial
vibration modes. The lowest two natural frequencies of the flexible links are
88.92 and 88.92 Hz. One percent structural damping is considered for every
chassis mode ot vibration.

4.1 Vehicle Response over Single Bump. The vehicle travels over the
single bump given in Fig. 7(a), with a vehicle speed of 3 m/sec (6.7
miles/hr). The simulation is carried out for two vehicle models, rigid and
flexible chassis, to evaluate flexibility effects of the chassis on vehicle
motion. To compare higher mode effects of the flexible chassis model, 2- and r
4-mode solutions are obtained. Figure 9 shows the vertical displacement of
the center of mass of the chassis, from its static equilibrium position. The I.
figure shows significant peak differences between vertical displacement of
rigid and flexible chassis models. Figure 9 also shows that the contribution
of higher vibration modes to vertical displacement of the chassis is

. negligible.

The vertical acceleration at the center of mass of the chassis is given
in Fig. 10, for each model. It shows that chassis flexibility results in
increased peak acceleration and significantly higher frequency content during
passage over the bump. The effect of structural damping on the vehicle
response is shown in Fig. 11. In this figure the vertical acceleration of the
chassis with and without damping are plotted. The damped response decays with
time, while the undamped response has a sustained oscillation.
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Computation time for the rigid model simulation was 7.0 minutes on a
PRIME 750 supermini computer. Computation times with the two and four mode
flexible chassis models were 2.08 and 5.18 times the computation time of the
rigid model. This shows that computational efficency can be obtained by using "• .'@
the smallest number of modes required to obtain reasonable accuracy.

4.2 Vehicle Respotise over Random Terrain. Simulation is carried out
over the terrain given in Fig. 7(b) for the rigid model, the two and four mode
flexible chassis models, the two mode flexible links model, and the two mode
flexible chassis and links model. Vehicle velocity is 7.5 m/sec. (16.8 .
miles/h). Results are given in Figs. 12 to 14. Since link flexibility does
not have significant effect on the global vehicle motion, results for the
model with flexible links are not included.

Figure 12 shows vertical displacement at the center of mass of the
chassis. No significant difference is observed between rigid and flexible
models. No significant difference has been found between the two and four-
mode solution of the flexible chassis models. It has also been found that
"there is no significant difference in vertical chassis displacement between
the two mode flexible chassis and links model and the two mode flexible
chassis model. It is concluded that flexibility effects of the stiff link
(which has relatively high natural frequency) on the vehicle response may be
neglected.

Figure 13 shows vertical acceleration at the center of mass cf the . ,
chassis. Flexibility of the chassis results in a significant increase in the •-•

acceleration level at the center of the chassis and high frequency content *.._..1

near the resonant frequency of the human body. Vibration in the chassis may
thus result in an unpleasant motion and deteriorate ride comfort of the
vehicle. Suspension link flexibility does not have noticeable effects on the "'-'.

vertical acceleration of chassis. n he iae cs t

Deflection of the front end of the chassis, with respect to its body-

fixed coordinate system, is given in Fig. 14. Dynamic peak deflections for
the two mode flexible chassis model is 22 times the static deflection of that
model. The frequency of vibration of the front of the chassis is about 6 Hz,
which is the fundamental natural frequency of the chassis.
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