TO ALL WHOM IT MAY CONCERN:

BE IT KNOWN that (1) ROBERT V. BELENGER and (2) GENNARO R. LOPRIORE, citizens of the United States of America, employees of the United States Government, and residents of (1) Raynham, County of Bristol, Commonwealth of Massachusetts, and (2) Somerset, County of Bristol, Commonwealth of Massachusetts, have invented certain new and useful improvements entitled as set forth above, of which the following is a specification.

MICHAEL J. MCGOWAN, ESQ.
Reg. No. 31042
Naval Undersea Warfare Center
Division, Newport
Newport, RI 02841-1708
TEL: 401-832-4736
FAX: 401-832-1231
SPEECH TO VISUAL AID TRANSLATOR ASSEMBLY AND METHOD

STATEMENT OF GOVERNMENT INTEREST

The invention described herein may be manufactured and used by and for the Government of the United States of America for Governmental purposes without the payment of any royalties thereon or therefor.

CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This patent application is co-pending with one related patent application entitled DISCRIMINATING SPEECH TO TOUCH TRANSLATOR ASSEMBLY AND METHOD (Attorney Docket No. 78210), by the same inventor as this application.

BACKGROUND OF THE INVENTION

(1) Field of the Invention

The invention relates to an assembly and method for assisting a person who is hearing impaired to understand a spoken word, and is directed more particularly to an assembly and method including a visual presentation of basic speech sounds (phonemes) directed to the person.
(2) Description of the Prior Art

Various devices and methods are known for enabling hearing-handicapped individuals to receive speech. Sound amplifying devices, such as hearing aids are capable of affording a satisfactory degree of hearing to some with a hearing impairment.

Partial hearing loss victims seldom, if ever, recover their full range of hearing with the use of hearing aids. Gaps occur in a person's understanding of what is being said because, for example, the hearing loss is often frequency selective and hearing aids are optimized for the individuals in their most common acoustic environment. In other acoustic environments or special situations the hearing aid becomes less effective and there are larger gaps of not understanding what is said. An aid optimized for a person in a shopping mall environment will not be as effective in a lecture hall.

With the speaker in view, a person can speech read, i.e., lip read, what is being said, but often without a high degree of accuracy. The speaker's lips must remain in full view to avoid loss of meaning. Improved accuracy can be provided by having the speaker "cue" his speech using hand forms and hand positions to convey the phonetic sounds in the message. The hand forms and hand positions convey approximately 40% of the message and the lips convey the remaining 60%. However, the speaker's face must still be in view.
The speaker may also convert the message into a form of sign language understood by the deaf person. This can present the message with the intended meaning, but not with the choice of words or expression of the speaker. The message can also be presented by fingerspelling, i.e., "signing" the message letter-by-letter, or the message can simply be written out and presented.

Such methods of presenting speech require the visual attention of the hearing-handicapped person.

There is thus a need for a device which can convert, or translate, spoken words to visual signals which can be seen by a hearing impaired person to whom the spoken words are directed.

SUMMARY OF THE INVENTION

Accordingly, an object of the invention is to provide a speech to visual aid translator assembly and method for converting a spoken message into visual signals, such that the receiving person can supplement the speech sounds received with essentially simultaneous visual signals.

A further object of the invention is to detect and convert to digital format information relating to a word sound's emphasis, including the suprasegmentals, i.e., the rhythm and rising and falling of voice pitch, and the intonation contour, i.e., the change in vocal pitch that accompanies production of a sentence, and to incorporate the digital information into the
display format by way of image intensity, color, constancy (blinking, varying intensity, flicker, and the like).

With the above and other objects in view, a feature of the invention is the provision of a speech to visual translator assembly comprising an acoustic sensor for detecting word sounds and transmitting the word sounds, a sound amplifier for receiving the word sounds from the acoustic sensor and raising the sound signal level thereof, and transmitting the raised sound signal, a speech sound analyzer for receiving the raised sound signal from the sound amplifier and determining (a) frequency thereof, (b) relative loudness variations thereof, (c) suprasegmental information therein, (d) intonational contour information therein, and (e) time sequence thereof, converting (a)-(e) to data in digital format, and transmitting the data in the digital format. A phoneme sound correlator receives the data in digital format and compares the data with a phonetic alphabet. A phoneme library is in communication with the phoneme sound correlator and contains all phoneme sounds of the selected phonetic alphabet. The translator assembly further comprises a match detector in communication with the phoneme sound correlator and the phoneme library and operative to sense a predetermined level of correlation between an incoming phoneme and a phoneme resident in the phoneme library, and a phoneme buffer for (a) receiving phonetic phonemes from the phoneme library in time sequence, and for (b) receiving from the speech sounds analyzer data indicative
of the relative loudness variations, suprasegmental information, intonational information, and time sequences thereof, and for (c) arranging the phonetic phonemes from the phoneme library and attaching thereto appropriate information as to relative loudness, supra-segmental and intonational information, for transmission to a display which presents phoneme sounds as phoneticized words. The user sees the words in a "traveling sign" format with, for example, the intensity of the displayed phonems dependent on the relative loudness with which it was spoken, and the presence of the suprasegmentals and the intonation contours.

In accordance with a further feature of the invention, there is provided a method for translating speech to a visual display. The method comprises the steps of sensing word sounds acoustically and transmitting the word sounds, amplifying the transmitted word sounds and transmitting the amplified word sounds, analyzing the transmitted amplified word sounds and determining the (a) frequency thereof, (b) relative loudness variations thereof, (c) suprasegmental information thereof, (d) intonational contour information thereof, and (e) time sequences thereof, converting (a)-(e) to data in digital format, transmitting the data in digital format, comparing the transmitted data in digital format with a phoneticized alphabet in a phoneme library, determining a selected level of correlation between an incoming phoneme and a phoneme resident in the phoneme
library, arraying the phonemes from the phoneme library in time
sequence and attaching thereto the (a)-(d) determined from the
analyzing of the amplified word sounds, and placing the arranged
phonemes in formats for presentation on the visual display, the
presentation intensities being correlated with (a)-(e) attached
thereto.

The above and other features of the invention, including
various novel combinations of components and method steps, will
now be more particularly described with reference to the
accompanying drawings and pointed out in the claims. It will be
understood that the particular assembly and method embodying the
invention are shown by way of illustration only and not as
limitations of the invention. The principles and features of
this invention may be employed in various and numerous
embodiments without departing from the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Reference is made to the accompanying drawings in which is
shown an illustrative embodiment of the invention, from which its
novel features and advantages will be apparent, and wherein:

FIG. 1 is a block diagram illustrative of one form of the
assembly and illustrative of an embodiment of the invention; and

FIG. 2 is a chart showing an illustrative arrangement of
spoken sounds, or phonemes, which can be used by the assembly to
render a visual presentation of spoken words.
DESCRIPTION OF THE PREFERRED EMBODIMENTS

Only 40+ speech sounds represented by a phonetic alphabet, such as the Initial Teaching Alphabet (English), shown in FIG. 2, or the more extensive International Phonetics Alphabet (not shown), usable for many languages, need to be considered in dynamic translation of speech sounds, or phonemes 10 to visual display.

In practice, the user listens to a speaker, or some other audio source, and simultaneously reads the coded, phoneticized words on the display. The display presents phoneme sounds as phoneticized words. The user sees the words in an array of liquid crystal cells in chronological sequence or, alternatively, in a “traveling sign” format, for example, with the intensity of the displayed phonemes dependent on the relative loudness with which words were spoken. Suprasegmentals and intonation contours can be sensed and be represented by image color and flicker, for example. The phoneticized words appear in chronological sequence with appropriate image accents.

The phonemes 10 comprising the words in a sentence are sensed via electro-acoustic means 14 and amplified to a level sufficient to permit their analysis and breakdown of the word sounds into amplitude and frequency characteristics in a time sequence. The sound characteristics are put into a digital format and correlated with the contents of a phonetic phoneme
library 16 that contains the phoneme set for the particular language being used.

A correlator 18 compares the incoming digitized phoneme with the contents of the library 16 to determine which of the phonemes in the library, if any, match the incoming word sound of interest. When a match is detected, the phoneme of interest is copied from the library and is dispatched to a coding means where the digitized form of the phoneme is coded into combinations of phonemes, in a series of combinations representing the phoneticized words being spoken. A six digit binary code, for example, is sufficient to permit the coding of all English phonemes, with spare code capacity for about 20 more. An additional digit can be added if the language being phonetized contains more phonemes than can be accommodated with six digits.

The practice or training required to use the device is similar to learning the alphabet. The user has to become familiar with the 40 some odd letter/symbols representing the basic speech sounds of the Initial Teaching Alphabet or the International Phonetics Alphabet, for example. By using the device in a simulation mode, a person would be able to listen to the spoken words (his own, a recording, or any other source) and see the phoneticized words in a dynamic manner. Other information relating to a word sound’s emphasis, the suprasegmentals (rhythm and the rising and falling of voice pitch) and the sentence’s intonation contour (change in vocal
pitch that accompanies production of a sentence), which can have a strong effect on the meaning of a sentence, can be incorporated into the display format via image intensity, color, flicker, etc. The technology for such a device exists in the form of acoustic sensors, amplifiers and filters, speech sound recognition technology and dynamic displays. All are available in various military and/or commercial equipment.

Referring to FIG. 1, the directional acoustic sensor 14 detects the word sounds produced by a speaker or other source. The directional acoustic sensor preferably is a sensitive, high fidelity microphone suitable for use with the frequency range of interest.

A high fidelity sound amplifier 22 raises a sound signal level to one that is usable by a speech sound analyzer 24. The high fidelity acoustic amplifier 22 is suitable for use with the frequency range of interest and with sufficient capacity to provide the driving power required by the speech sound analyzer 24.

The analyzer 24 determines the frequencies, relative loudness variations and their time sequence for each word sound sensed. The speech sound analyzer 24 is further capable of determining the suprasegmental and intonational characteristics of the word sound, as well as contour characteristics of the sound. Such information, in time sequence, is converted to a digital format for later use by the phoneme sound correlator 18.
and a phoneme buffer 26. The determinations of the analyzer 24 are presented in a digital format to the phoneme sound correlator 18.

The correlator 18 uses the digitized data contained in the phoneme of interest to query the phonetic phoneme library 16, where the appropriate phoneticized alphabet is stored in a digital format. Successive library phoneme characteristics are compared to the incoming phoneme of interest in the correlator 18. A predetermined correlation factor is used as a basis for determining "matched" or "not matched" conditions. A "not matched" condition results in no input to the phoneme buffer 26.

The correlator 18 queries the phonetic alphabet phoneme library 16 to find a digital match for the word sound characteristics in the correlator.

The library 16 contains all the phoneme sounds of a phoneticized alphabet characterized by their relative amplitude and frequency content in a time sequence. When a match detector 28 signals a match, the appropriate digitized phonetic phoneme is copied from the phoneme buffer 26, where it is stored and coded properly to activate the appropriate visual display to be interpreted by the user as a particular phoneme.

When a match is detected by the match detector 28, the phoneme of interest is copied from the library 16 and stored in the phoneme buffer 26, where it is coded for actuation of the appropriate display. The match detector 28 is a correlation...
detection device capable of sensing a predetermined level of
correlation between an incoming phoneme and one resident in the
phoneme library 16. At this time, it signals the library 16 to
enter a copy of the appropriate phoneme into the phoneme buffer
26.

The phoneme buffer 26 is a digital buffer which assembles
and arranges the phonetic phonemes from the library in their
proper time sequences and attaches any relative loudness,
suprasegmental and intonation contour information for use by the
display in presenting the stream of phonemes with any loudness,
suprasegmental and intonation superimpositions.

The display 30 presents a color presentation of the sound
information as sensed by the Visual Aid to Hearing Device. The
phonetic phonemes 10 from the library 16 are seen by the viewer
with relative loudness, suprasegmentals and intonation
superimpositions represented by image intensity, color and
constancy (flicker, blinking, and varying intensity, for
example). The number of phonetic phonemes displayed can be
varied by increasing the time period covered by the display. The
phonemes comprising several consecutive words in a sentence can
be displayed simultaneously and/or in a "traveling sign" manner
to help in understanding the full meaning of groups of
phonicized words. The display function can be incorporated
into a "heads up" format via customized eye glasses or a hand
held device, for example. The heads up configuration is suitable
for integrating into eyeglass hearing aid devices, where the heads up display is the lens set of the glasses.

There is thus provided a speech to visual translator assembly which enables a person with a hearing handicap to better understand the spoken word. The assembly provides visual reinforcement to the receiver's auditory reception. The assembly can be customized for many languages and can be easily learned and practiced.

It will be understood that many additional changes in the details, method steps and arrangement of components, which have been herein described and illustrated in order to explain the nature of the invention, may be made by those skilled in the art within the principles and scope of the invention as expressed in the appended claims.
SPEECH TO VISUAL AID TRANSLATOR ASSEMBLY AND METHOD

ABSTRACT OF THE DISCLOSURE

A speech to visual display translator assembly and method for converting spoken words directed to an operator into essentially simultaneous visual displays wherein the spoken words are presented in phonems and variations in loudness and tone, and/or other characteristics of phonemes displayed, are presented visually by the display.
<table>
<thead>
<tr>
<th>CONSONANT SOUNDS</th>
<th>VOWEL SOUNDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 P as in sip</td>
<td>29 ee as in beet</td>
</tr>
<tr>
<td>2 P as in pen</td>
<td>30 i as in bit</td>
</tr>
<tr>
<td>3 b as in bit</td>
<td>31 i as in bid</td>
</tr>
<tr>
<td>4 m as in map</td>
<td>32 ai as in aid</td>
</tr>
<tr>
<td>5 w as in wit</td>
<td>33 a as in at</td>
</tr>
<tr>
<td>6 ou as in out</td>
<td>34 ur as in hurt</td>
</tr>
<tr>
<td>7 f as in fat</td>
<td>35 e as in bet</td>
</tr>
<tr>
<td>8 v as in vat</td>
<td>36 a as in about</td>
</tr>
<tr>
<td>9 t as in thin</td>
<td>37 u as in putt</td>
</tr>
<tr>
<td>10 th as in this</td>
<td>38 a as in father</td>
</tr>
<tr>
<td>11 st as in step</td>
<td>39 oo as in food</td>
</tr>
<tr>
<td>12 t as in tip</td>
<td>40 oo as in foot</td>
</tr>
<tr>
<td>13 d as in dip</td>
<td>41 oe as in toe</td>
</tr>
<tr>
<td>14 n as in nip</td>
<td>42 aw as in law</td>
</tr>
<tr>
<td>15 l as in lip</td>
<td></td>
</tr>
<tr>
<td>16 tt as in utter</td>
<td></td>
</tr>
<tr>
<td>17 s as in sip</td>
<td></td>
</tr>
<tr>
<td>18 z as in zip</td>
<td></td>
</tr>
<tr>
<td>19 r as in red</td>
<td></td>
</tr>
<tr>
<td>20 ss as in mission</td>
<td></td>
</tr>
<tr>
<td>21 s as in vision</td>
<td></td>
</tr>
<tr>
<td>22 ck as in sick</td>
<td></td>
</tr>
<tr>
<td>23 k as in kiss</td>
<td></td>
</tr>
<tr>
<td>24 g as in give</td>
<td></td>
</tr>
<tr>
<td>25 ng as in king</td>
<td></td>
</tr>
<tr>
<td>26 y as in yet</td>
<td></td>
</tr>
<tr>
<td>27 i as in bite</td>
<td></td>
</tr>
<tr>
<td>28 h as in hit</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 2
Attorney Docket No. 78123
Date: 20 February 2003

The below identified patent application is available for licensing. Requests for information should be addressed to:

PATENT COUNSEL
NAVAL UNDERSEA WARFARE CENTER
1176 HOWELL ST.
CODE 00OC, BLDG. 112T
NEWPORT, RI 02841

Serial Number 10/292,955
Filing Date 11/12/02
Inventor Robert V. Belenger

If you have any questions please contact James M. Kasischke, Acting Deputy Counsel, at 401-832-4736.

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited