The below identified patent application is available for licensing. Requests for information should be addressed to:

PATENT COUNSEL
NAVAL UNDERSEA WARFARE CENTER
1176 HOWELL ST.
CODE 000C, BLDG. 112T
NEWPORT, RI 02841

Serial Number 10/244,925
Filing Date 9/11/02
Inventor Robert C. Higgins

If you have any questions please contact James M. Kasischke, Patent Counsel Acting, at 401-832-4736.
BUSINESS TO BUSINESS ELECTRONIC TEST
MONITORING INFORMATION SYSTEM

TO ALL WHOM IT MAY CONCERN:

BE IT KNOWN THAT ROBERT C. HIGGINS, citizen of the United States of America, employee of the United States Government and resident of Tiverton, County of Newport, State of Rhode Island has invented certain new and useful improvements entitles as set forth above of which the following is a specification:

JAMES M. KASISCHKE, ESQ.
Reg. No. 36562
Naval Undersea Warfare Center
Division Newport
Newport, RI 02841-1708
TEL: 401-832-4736
FAX: 401-832-1231
BUSINESS TO BUSINESS ELECTRONIC TEST
MONITORING INFORMATION SYSTEM

STATEMENT OF GOVERNMENT INTEREST

The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefore.

BACKGROUND OF THE INVENTION

(1) Field Of The Invention

The invention relates to systems for monitoring testing/manufacturing processes and, more particularly, to such systems which identify defective components and their corresponding vendors.

(2) Description Of The Prior Art

There are many known systems for monitoring testing and manufacturing processes. Such systems are typically computerized and vary in their level of integration into the testing/manufacturing process. Some systems provide the capability to monitor and report the number of parts produced and defects or faults. This information has proven useful in
evaluating and improving or controlling testing/manufacturing processes.

However, known systems do not offer an automated two-way system for communication between product manufacturer and a vendor component manufacturer. For example, often a manufacturing company will produce a product with multiple component parts that are manufactured by other companies or vendors. When the ultimate product is manufactured and tested, a component of the ultimate product will fail. Testing is done on the defective product to determine which component failed and ultimately the vendor is asked to produce a failure analysis wherein the ultimate cause of the failure is analyzed. However, the inability to provide the component vendor with prompt and sufficient information regarding testing procedures, tolerance criteria, testing history, etc. often results in long delays. Moreover, known systems do not provide a method of notifying the product manufacturer of the availability of the component vendor failure report.

SUMMARY OF THE INVENTION

A first object of this invention is a system that reduces delays in the testing/manufacturing process.

Another object is a system that automatically alerts the associated vendor upon a component failure or defect.
A further object is a system that allows the vendor access to all relevant and/or necessary information regarding the component failure and testing.

Yet another object is a system that allows the component vendor to enter data regarding the cause of the component failure.

As a final object, the system should automatically alert the appropriate testing/manufacturing personnel of the availability of the vendor's failure analysis.

Accordingly, the present invention features a system and method of monitoring business-to-business product testing by establishing a two-way communication system. In one embodiment, the system stores information associated with a product in a database. Upon detection of a defect, the system identifies the vendor associated with a defective component of the product and automatically notifies predetermined personnel within the manufacturing/testing organization and at least the vendor associated with the defective component. Next, the system provides access to the database to at least the vendor, thus allowing the vendor to obtain information regarding the defect. The vendor then downloads information regarding the defect into the database, at which point predetermined personnel within the testing/manufacturing organization are automatically notified.
Access to the vendor’s product failure analysis report is then provided to the predetermined personnel.

In a preferred embodiment, the database is a product database and includes component-vendor data, product testing procedure data, acceptance criteria data, and component failure history data. The access given to the vendor is preferably password protected.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present invention will be better understood in view of the following description of the invention taken together with the drawings wherein:

FIG. 1 is a block diagram of one embodiment of a network structure of the present invention;

FIG. 2 is a block diagram illustrating the data flow between a product manufacturer and component vendors according to one embodiment of the present invention; and

FIG. 3 is a flow chart that defines functions performed by one embodiment of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT

A system 10, FIG. 1, in accordance with the present invention, monitors the testing/manufacturing process conducted
at site 12, for instance a remote testing/manufacturing site, of
a product that contains components from a plurality of vendors
or component manufacturers 14. The system 10 automatically
creates a two-way communication system between the remote
testing/manufacturing site 12 and the component vendors 14 upon
the identification of a defect in the product by automatically
notifying and providing access to a database 16 to both the
component vendor 14 and the testing/manufacturing site 12. As a
result, delays in the testing/manufacturing process are thereby
reduced.

The remote testing/manufacturing sites 12 represent
manufacturing stations, testing stations, and/or quality
assurance stations, and typically include a computer that is
linked to the database 16 through a network connection 18. The
database 16 may also be linked to a plurality of other stations
located anywhere within the testing/manufacturing
organization. Additionally, the system 10 includes a network
connection 22 between the plurality of vendors 14 and the
database 16.

The database 16 includes relevant information (data)
regarding the product being tested/manufactured. In a preferred
embodiment, the database 16 is product database, and may be any
commercially available product database known to those skilled
in the art. The system 10 can be used in conjunction with any
other known systems that monitor testing/manufacturing processes.

For simplicity, the present invention will be described as it relates to a computer system shock test, but this is for exemplary purposes only, and is not intended to be a limitation in any way. The following is best understood when read in conjunction with FIGs. 2 and 3.

In one embodiment, a tester, for example at a remote testing site, downloads 210 data associated with the testing of a product (such as a computer system) from the database 205. In a preferred embodiment, the database is a product database and includes test procedure data, acceptance criteria data, component-vendor data, component failure history data, and/or any other relevant data associated with the product.

The tester then performs the test 220, for example a system shock test. In the event that a defect in the product is detected (e.g., the processor stops and reboots 230), data regarding the product test is entered into the database. In one embodiment, the tester downloads a test result form 240 and enters specifics about the test including acceptance or failure. The test result form preferably includes a graphical user interface (GUI) that allows the tester to quickly and easily enter the data into the database. The test result form contains information relevant to the test performed and the exact format
and/or information contained within it will depend upon the circumstances of the test, and is within the ordinary knowledge of one skilled in the art. The test result form will have a predetermined format that best suits the application. Upon completion of the form, results are uploaded to database 205, which follows the process shown in FIG. 3.

Database 205 is initially provided with data about the products, FIG. 3, step 300. Upon entry of a failed test result form, the component responsible for the product failure and the vendor associated with the corresponding defective component are identified 310. In a preferred embodiment, the present invention automatically identifies the component vendor associated with the component failure. Upon identification of the occurrence of the defect, alerts are generated 320 and sent to predetermined personnel 330 within the testing/manufacturing organization and at least the vendor 340 associated with the component failure. Alerts may also be sent to additional parties including, but not limited to, other vendors associated with the product. The alerts include any method known to those skilled in the art including, but not limited to, e-mail notification, telephonic notification, and paging.

Upon receipt of the alert, access 350 to the product database is provided to at least the vendor associated with the defect. Additional parties may also be granted access as deemed
necessary. The extent of the access granted to the vendor and others will depend upon the particular circumstances, but generally includes access to the data within the product database that is necessary to determine the cause of the failure. In a preferred embodiment, the access to the product database is password protected.

After determining the cause of the failure, the vendor then transmits information 360 related to the component failure along with any additional information/comments. In a preferred embodiment, the vendor downloads a Failure Analysis Report (FAR) from the database and transmits the completed FAR to the database. The information contained in the FAR will depend upon the particular test performed. In an exemplary embodiment, the FAR may include raw test data, interpretation of data collected, and a conclusion derived from experience and knowledge.

Upon receipt of the information from the vendor regarding the vendor's analysis of the component failure, generated analysis alerts 370 are automatically sent to predetermined personnel 380 within the testing/manufacturing organization notifying them of the information's availability. Availability of this information is shown in step 250. The predetermined personnel may include the same or different personnel who received the original notification. Again, alerts may also be sent to additional parties including, but not limited to, other
vendors associated with the product and may include any method
known to those skilled in the art including, but not limited to,
e-mail notification, telephonic notification, and paging.
Access 390 to the database is then made available to the
predetermined personnel. These personnel can then take
corrective action as shown at step 260.

The recommendations of the vendor, along with those within
the organization, are then retested and the results entered 270
into the database. If another defect is identified, then the
process starts all over again. Accordingly, the present
invention reduces delays in the testing/manufacturing process.

In light of the above, it is therefore understood that
within the scope of the appended claims, the invention may be
practiced otherwise than as specifically described.
ABSTRACT OF THE DISCLOSURE

A system/method of establishing a two-way communication system between a testing/manufacturing site and a component vendor is disclosed. The system allows the test results related to a component failure to be immediately available to a vendor by allowing the vendor password protected access to a product database that contains information regarding the product being tested. The system automatically alerts the vendor associated with the defective component, and allows the vendor to download the vendor's failure analysis report to the product database as soon as it becomes available. Upon receipt of the vendor's failure analysis report, the appropriate testing/manufacturing personnel are notified.
Storing data in a database associated with a product

Identify defective component and associated vendor

Send notification to predetermined personnel

Generate alerts

Send notification to appropriate vendor

Provide access to database to vendor

Receive data into database from vendor regarding defect

Generate alerts

Send notification to predetermined personnel

Provide access to database to predetermined personnel

FIG. 3