Polyurethane Self-Priming Topcoats

A corrosion-resistant coating which can be applied directly to a surface as self-priming topcoat comprising a polyurethane resin binder and a combination of pigments consisting essentially of an alkaline earth metal metaborate, zinc salts of benzoic acids, and an alkaline earth metal phosphate such as zinc-barium phosphate. In addition, the coating contains from 5-40 parts by weight of a titanium dioxide pigment, up to about 3.0 parts by weight of an oil soluble dispersant and up to about 50 parts by weight of at least one organic solvent.
A corrosion-resistant coating which can be applied directly to a surface as a self-priming topcoat comprising a polyurethane resin binder and a combination of pigments consisting essentially of an alkaline earth metal metaborate, zinc salts of benzoic acids, and an alkaline earth metal phosphate such as zinc-barium phosphate. In addition, the coating contains from 5-40 parts by weight of a titanium dioxide pigment, up to about 3.0 parts by weight of an oil soluble dispersant and up to about 50 parts by weight of at least one organic solvent.

13 Claims, No Drawings
POLYURETHANE SELF-PRIMING TOPCOATS

STATEMENT OF GOVERNMENT INTEREST

The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.

CONTINUATION APPLICATIONS

This application is a Continuation-In-Part of copending application Ser. No. 07/936,983 filed Aug. 25, 1992 which in turn is a Continuation-In-Part of copending application Ser. No. 07/812,174 filed Dec. 20, 1991.

BACKGROUND OF THE INVENTION

This invention relates to novel coating compositions and more specifically to corrosion-resisting coatings which can be applied directly to various surfaces particularly metal either as a high or low gloss, self-priming topcoat. Various surfaces and particularly metal surfaces require the protection of coatings especially when the surfaces are exposed to a corrosive environment. Metal surfaces of aircraft, for example, are exposed to seawater which require protection from corrosion. Specifically, aircraft, e.g., Navy aircraft, are exposed to seawater spray in addition to various acid-forming gases such as sulfur dioxide, carbon dioxide, etc. Moreover, in addition to aircraft, various machinery and equipment in the industrial environments, where fossil fuels are used need protection against corrosion. It is important therefore that the coating be resistant to corrosion, various chemicals, the weather and at the same time be flexible and have good adhesion to the substrates.

Presently, coating systems comprise one or more films, i.e., an undercoat, a sealant and a topcoat. Aircraft, for example, traditionally have been coated with high performance two-component protective films consisting of an epoxy primer and a polyurethane topcoat. The type of epoxy primers used on the aircraft are designed to adhere to the metal surface and help to improve the adhesion of the topcoat and to prevent the corrosion of the metal. However, these undercoats require a topcoat, since the undercoats lack flexibility especially at low temperatures (−60°F) resulting in extensive cracking particularly in highly flexed areas of the aircraft. Moreover, the undercoats usually lack weather resistance and generally cannot be formulated in different colors required for aircraft.

In comparison, the polyurethane coatings of this invention, provides the necessary corrosion resistance, the required degree of flexibility, the desired optical properties, and a resistance to weather and various chemicals. To obtain these characteristics, the multi-film coatings used heretofore generally required a dry-film thickness ranging up to about 0.005 inches, e.g., up to about 10 mils or more which added considerable weight to the aircraft. In addition, the multi coats are time consuming to apply particularly since there is a drying time between each application. Further, the removal of a two-coat system can be difficult and time consuming and generates high levels of volatile organic (VOC) emissions during the operation.

In accordance with this invention the corrosion-resistant coating comprise a polyurethane binder derived from the reaction of at least one polyol, e.g., polyester polyol and an isocyanate, e.g., hexamethylene disiocyanate (HDI) in combination with a unique mixture of corrosion-inhibiting pigments consisting essentially of (1) an alkaline earth metal phosphate, e.g., zinc-barium phosphate, (2) zinc salts of benzoic acid or substituted benzoic acids, and (3) an alkaline earth metal metabolite. All three of these metal compounds or salts are essential, in the stated relative proportions, to provide a single high-gloss coating with the necessary corrosion resistance and adhesion characteristics required of a good top coat. In addition, titanium dioxide (TiO₂) including spherical TiO₂ particles, e.g., vesiculated beads of TiO₂ are included as a pigment together with these three alkaline earth metal or zinc salts. The coating compositions of this invention may be applied, as one coat, directly onto various hard surfaces such as metal and/or organic matrix composites, etc., and do not require an undercoat to provide a corrosion-resistant finish with desired optical and adhesion properties.

SUMMARY OF THE INVENTION

A corrosion-resistant coating which can be applied directly to a surface as a self-priming topcoat comprising from about 25 to 55 parts by weight and preferably 30–50 parts of a polymeric urethane resin binder and a combination of three corrosion-resistant pigments consisting essentially of an alkaline earth metal metabolite (BUTROL-22), zinc salts of benzoic acids, and alkaline earth metal and/or zinc phosphates such as a complex zinc-barium phosphate, together with nonionic or anionic dispersing agents, TiO₂ pigments, and organic solvents.

Accordingly, it is an object of this invention to provide a corrosion-resistant coating which can be applied directly to a surface, e.g., metal, as a single coat.

It is another object of this invention to provide a coating which is flexible, resistant to corrosion, chemicals, and weathering, and has good adhesion characteristics.

It is still a further object of this invention to provide a coating for use on military or civilian aircraft of reduced thickness to lower the weight thereon while at the same time providing the necessary corrosion resistance.

These and other objects of the invention are accomplished, in accordance with this invention, by providing a corrosion-resistant coating capable of being applied as a single coating with appropriate optical properties.

THE PREFERRED EMBODIMENTS

This invention is directed to a corrosion-resistant coating which functions as a primer and a topcoat. More specifically, this invention relates to a corrosion-resistant coating which comprises a major amount, e.g., 25 to 55 parts by weight of a urethane resin, i.e., polyurethane resin binder, and minor amounts of corrosion-inhibiting pigments, i.e., alkaline earth metal compounds and/or zinc salts. The unique combination of corrosion-inhibiting pigments consist essentially of from about 1 to 30 parts and preferably 5 to 25 parts by weight of an alkaline earth metal phosphate, e.g., zinc or zinc-barium phosphate, 0.1 to 5 parts and preferably 0.5 to 3 parts by weight of a zinc salt of a benzoic acid or substituted benzoic acid, and about 5.0 to 35 parts and preferably 10 to 30 parts by weight of an alkaline earth metal metabolite. In addition to the above metal compounds, depending on the opacity, etc., required of the coating, from 5.0 to 40 parts, and preferably from 10
to 35 parts by weight of titanium dioxide pigment, based on the total weight of the coating, is added as an additional pigment. Up to about 100% of the total amount of TiO₂ may be in the form of vesiculated beads, e.g., from 0 to 50% of the TiO₂ in the coating are beads. Generally, the coating is applied as a high solids organic solution and therefore generally contains from 0 to 3.0 and preferably about 0.1 to 1.0 parts by weight of at least one oil soluble nonionic or anionic dispersing or wetting agent such as Anti-Terra-204 or BYK-320. Anti-Terra-204 is a carboxylic acid of polyamine-amides and BYK-320 is a polyether modified methylalylkylpolysiloxane copolymers. Various other nonionic or anionic dispersing agents known as oil soluble dispersants or paint additives may be used in the coating. In addition, the coating contains from about 0 to 50 parts, e.g., as needed or from 15 to 35 parts by weight of the total coating of at least one organic solvent, e.g., Mil-T-81772 or various mixtures of paint solvents.

The organic binder of the coating comprises a polyurethane, and more particularly an aliphatic polyurethane derived from the reaction of a polyol and a multifunctional aliphatic isocyanate. The polyol, e.g., polyester polyol, is preferably used as a solution in an organic solvent such as toluene, xylene, n-butyl acetate, propylene glycol monomethyl ether acetate, methyl ethyl ketone, etc. The polyisocyanate can be used as a 100% solid, but can be diluted also with any of the above organic solvents. The hydroxyl number of the polyols, i.e., polyester polyols and the isocyanate (NCO) content or the equivalent weights of the polyisocyanate and polyol are determined in order to obtain the desired polyurethane. The preferred polyols and polyisocyanates are reacted in approximately stoichiometric amounts so that the NCO to OH ratio ranges from about 0.85 to 1.4 equivalent of the NCO to 1.0 equivalent of the OH, or at about a 1.0 to 1.0 ratio of the NCO to OH.

The combination of metal salts and/or pigments is unique and consists essentially of specific amounts of an alkaline earth metal phosphate, e.g., zinc phosphate or zinc-barium phosphate etc., zinc salts of benzoic acid or a substituted benzoic acid and an alkaline earth metal metaphosphates. These three metal salts or pigments used alone and in combination with TiO₂ provide outstanding corrosion protection and enables the coating to be used as a self-priming, high-gloss or low-gloss topcoat.

The preferred zinc salt of a substituted benzoic acid is specifically characterized as having at least one hydroxyl group and nitro (NO₂) substituent and molecular weights of about 100-500, e.g. 300, density of about 50-60.

EXAMPLE 1

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Parts by Weight (Ranges)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyurethane Resin derived from</td>
<td></td>
</tr>
<tr>
<td>polyester polyols and polyisocyanates</td>
<td>25-55</td>
</tr>
<tr>
<td>Titanium dioxide</td>
<td>5-40</td>
</tr>
<tr>
<td>Titanium dioxide (vesiculated beads)</td>
<td>0-5.0</td>
</tr>
<tr>
<td>Alkaline earth</td>
<td>1-30</td>
</tr>
<tr>
<td>Metal phosphates and complexes</td>
<td>5-25</td>
</tr>
<tr>
<td>Zinc salts of substituted benzoic acids</td>
<td>0.1-5</td>
</tr>
<tr>
<td>Alkaline Earth</td>
<td>5-35</td>
</tr>
<tr>
<td>Metal Metabolates</td>
<td>10-30</td>
</tr>
<tr>
<td>Dispersing agents, e.g., Anti-Terra-204 (Oil Soluble Anionic or Nonionic dispersants)</td>
<td>0-3</td>
</tr>
<tr>
<td>Organic solvents for coatings</td>
<td>0-50</td>
</tr>
</tbody>
</table>

EXAMPLE 2

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Parts by Weight (Ranges)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyurethane Resin derived from</td>
<td></td>
</tr>
<tr>
<td>polyester polyol in organic solvents (i.e., propylene glycol monomethyl ether acetate, N-butyl acetate) and polyisocyanate</td>
<td>38.7</td>
</tr>
<tr>
<td>Titanium Dioxide Pigment</td>
<td>10.1</td>
</tr>
<tr>
<td>Titanium Dioxide Vesiculated Beads</td>
<td>0.6</td>
</tr>
<tr>
<td>Zinc-Barium Phosphate</td>
<td>24.2</td>
</tr>
<tr>
<td>Zinc Salt of a substituted Benzoic Acid (Sicorin RZ)</td>
<td>2.4</td>
</tr>
<tr>
<td>Barium Metabolates, (BUTROL-22)</td>
<td>23.7</td>
</tr>
<tr>
<td>Dispersant (BYK-320)</td>
<td>0.3</td>
</tr>
<tr>
<td>Polyether Modified Methylalylkyl Polysiloxane</td>
<td>As Needed</td>
</tr>
<tr>
<td>Organic Solvents</td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE 3

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Parts by Weight (Ranges)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyurethane Resin derived from</td>
<td></td>
</tr>
<tr>
<td>polyester polyol in organic solvents (i.e., propylene glycol monomethyl ether acetate, N-butyl acetate) and polyisocyanate</td>
<td>38.7</td>
</tr>
<tr>
<td>Titanium Dioxide Pigment</td>
<td>10.1</td>
</tr>
<tr>
<td>Titanium Dioxide Vesiculated Beads</td>
<td>0.6</td>
</tr>
<tr>
<td>Zinc-Barium Phosphate</td>
<td>24.2</td>
</tr>
<tr>
<td>Zinc Salt of a substituted Benzoic Acid (Sicorin RZ)</td>
<td>2.4</td>
</tr>
<tr>
<td>Barium Metabolates, (BUTROL-22)</td>
<td>23.7</td>
</tr>
<tr>
<td>Dispersant (BYK-320)</td>
<td>0.3</td>
</tr>
<tr>
<td>Polyether Modified Methylalylkyl Polysiloxane</td>
<td>As Needed</td>
</tr>
<tr>
<td>Organic Solvents</td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE 4

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Parts by Weight (Ranges)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyurethane Resin derived from</td>
<td></td>
</tr>
<tr>
<td>polyester polyol in organic solvents (i.e., propylene glycol monomethyl ether acetate, N-butyl acetate) and polyisocyanate</td>
<td>49.40</td>
</tr>
<tr>
<td>Titanium Dioxide Pigment</td>
<td>31.9</td>
</tr>
<tr>
<td>Titanium Dioxide Vesiculated Beads</td>
<td>0.0</td>
</tr>
<tr>
<td>Zinc-Barium Phosphate</td>
<td>6.2</td>
</tr>
<tr>
<td>Zinc Salt of a substituted Benzoic Acid</td>
<td>0.6</td>
</tr>
</tbody>
</table>
In the examples, the polyester polyol blend was used as a solution, e.g., 79% solids in propylene glycol monomethyl ether acetate and butyl acetate. The polyisocyanate was 100% solids, e.g., substantially containing no solvents.

Preferably, the coatings are prepared by mixing all of the ingredients, except the polyisocyanate and then milling the mixture to a fineness of about 5 for camouflage and 7 for high gloss colors on the Heggeman scale according to ASTM D1210. Subsequently, the polyisocyanate is added before the application of the coating to the substrate. The coating is applied on the substrate at temperatures ranging from about 0.001 to 0.003 inches e.g. from 0.5 to about 10 mils and preferably 1 to 3 mils. The coating may be applied by various methods including spraying, rolling, or brushing onto the surface depending on the viscosity. The viscosity of the coating for the particular application may be achieved by adjusting the content of the solvent within the ranges specified herein and by the selection of the particular reactants used to form the urethane resin. After the coating is applied to the surface, the solvent is evaporated at room or elevated temperatures and is allowed to cure to a film thickness having the desired properties. The pigments can be introduced into the coating by first forming a mill base with the polyester polyol. The mill base can be formed, for example, by conventional sand-grinding or ball-milling techniques, and then blended, by simple stirring or agitation with the other ingredients of the composition.

The combination of the barium metaphosphate, the zinc salts of benzoic acid, e.g., zinc benzoate and an alkaline earth metal phosphate, e.g., zinc or zinc-barium phosphates, improved the corrosion resistance while maintaining all the other desirable characteristics required of the coating. In other words, the specific combination of the barium metaphosphate, the zinc salt of substituted benzoic acids and zinc or zinc-barium phosphates, in the ratios stated, improved the corrosion inhibition substantially when compared to the use of either one of these metal salts alone in the same coating.

More specifically, in preparing the urethane resins, the preferred polyester polyols of this invention have equivalent weights ranging from about 260 to 970 with hydroxyl numbers ranging from 40 to 252 and an acid number less than 10. The polyols includes a variety of polyester polyhydric compounds known in the art including, for example, the condensation-reaction products of penterythritol and/or glycols with monocarboxylic acids or an aromatic or aliphatic dicarboxylic acid. Any branched-chain glycol may be used in the formation of the polyester, although it is preferred that these glycols contain no more than 8 carbon atoms. A useful polyol is formed where the molar ratio of glycol to penterythritol is from 2:1 to about 6:1. The carboxylic acid component of the polyester polyol prevents the molecular weight build-up of the polyol. It has been found that any aromatic or aliphatic monobasic acid or mixtures of these having 18 or less carbon atoms can be used. Normally, the acids are used in a molar ratio of acid to polyolcohol of about 1:1 to 2.5:1.

Examples of aromatic monocarboxylic acids include benzoic acid, butylbenzoic acid, triethyl benzoic acid, toluid acid, phenylacetic acid, and the like. Examples of aliphatic acids are acetic acid, propionic acid, butyric acid, valeric acid, capric acid, caprylic acid, pelargonic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, etc.

The dicarboxylic acids useful in the formation of the polyester polyols have the general formula:

$$\text{HOOC—R—COOH}$$

where R is aliphatic or aromatic group. Preferred are succinic acid, glutaric acid, adipic acid and pimelic acid.

Useful acids are those in which R has 2 to 8 carbon atoms with the preferred being maleic acid and itaconic acid. The aromatic dibasic acids are phthalic, isophthalic, and terephthalic, although other aromatic dibasic acids can be used.

It is known that the lower alkyl mono- or diesters of these acids and the anhydrides thereof can be used in place of the free acids. Other known polyester polyols can be obtained by the condensation reaction between a polybasic acid, such as adipic acid, phthalic anhydride, isophthalic acid, etc., and a diol or triol, such as ethylene glycol, diethylene glycol, propylene glycol, trimethyl propane, glycerine, etc.

The hydroxylic numbers of the preferred polyester polyols should be at least 40 and preferably between 40 and 252. The polyols, containing hydroxy groups, are combined with the polyisocyanate. This combination can be carried out in several ways known to the art. For example, an organic solution of the polyester containing, if desired, a catalyst-promoting urethane formation such as an organo-tin compound, is added to an chemical equivalent amount of the isocyanate. The combination is made at ambient temperature but the heat of reaction usually causes an increase in temperature. The mixture is agitated preferably at room temperature until the urethane reaction is substantially completed. The cause of the reaction can be followed by noting the viscosity of the mixture. When the viscosity becomes substantially constant, it may be concluded that the reaction is substantially completed.
tant reaction product may contain insignificant amounts
of free isocyanate and/or hydroxyl groups.

Alternatively, the polyester solution can be reacted
with a small excess, e.g. about 10% excess of the isocy-
4
anate. After the urethane reaction is substantially com-
5
pleted the excess NCO groups can be reacted with
“chain-extending” substances, e.g. water, alcohols, etc.

This procedure results in polymers of substantially
equivalent character but permits the reaction to pro-
ceed at a faster rate, due to the mass action of the excess
NCO groups. The term “small excess” is intended to be
included within the meaning of the term “stoichiomet-
ric amounts”.

The polyisocyanates and particularly the aliphatic
polyisocyanates based on HDI include various multi-
6
functional aliphatic polyisocyanates having an isocy-
anate content (NCO) ranging from about 10 to 30% by
weight with an equivalent weight (NCO) ranging up to
about 300. Specific examples of the organic polyisocy-
8
anates used in this invention make up about 5 to 30%
and preferably 5 to 20% by weight of the film-forming
blend. These compounds include aliphatic, cycloali-
9
phatic, alkaryl, aralkyl, heterocyclic, and aryl di- or
triisocyanates. Specific compounds include, for exam-
ple, polyisocyanates such as:
diphenylmethane-4,4'-diisocyanate,
diphenylene-4,4'-diisocyanate
toluene-2,4-diisocyanate,
toluene-2,6-diisocyanate,
3,3'-dimethoxy-4,4'-diphenyl diisocyanate
methy-
lene-bis-(4-cyclohexyl isocyanate)
tetramethylene diisocyanate,
hexamethylene diisocyanate,
decamethylene diisocyanate,
ethylenediisocyanate,
propylene-1,2-diisocyanate,
cyclohexylene-1,2-diisocyanate,
m-phenylenediisocyanate,
p-phenylenediisocyanate,
1,5-naphthalenediisocy-
nate,
3,3'-dimethyl-4,4'-biphenylene diisocyanate,
3,3'-dimethoxy-4,4'-biphenylene diisocyanate,
3,3'-diphenyl-4,4'-biphenylene diisocyanate,
4,4'-diphenylene diisocyanate,
3,3'-dichloro-4,4'-biphenylene diisocyanate,
furfuryldiisocyanate,
bis-(2-isocyanatoethyl)furmarate,
1,3,5-benzene triisocyanate,
para, para', para'-triphenylmethane triisocyanate,
3,3'-diisocyanatodipropyl ether,
xylene diisocyanate,
B,B'-diphenyl propane-4,4'-diisocyanate,
and isophorone diisocyanate. Preferred polyisocyanates
include hexamethylenediisocyanate and methylene-
bis-(4-cyclohexyl isocyanate) e.g. DESMODUR-N.

By selecting the proper polyols and by adjusting the
NCO to OH ratio, the physical properties and efficiency
of the film, such as the strength of film, flexibility,
chemical resistance, solvent resistance, etc., can be con-
trolled over a wide range. Compounds where the NCO
to OH ratio ranges from 0.85 to 1.4 of NCO to 1.0 of
OH groups e.g. 1:2:1 are useful for the manufacture of
casting in accordance with this invention.

If the coating is derived from a two-package system,
the polyisocyanate is in one package and a solution of
the polyl is in a separate package. The two reactants,
one containing the pigments, are thoroughly mixed just
before applying the coating onto the surface. Separation
of the two reactants is usually necessary since the "pot
life" of some of the compositions is short. The polyiso-
cyanate (NCO) reacts with the hydroxyl groups of the
polyol at temperature as low as about 40° F. (4° C).
Regardless of the method by which the coating com-
position is prepared, the coating should contain 20 to 60
parts by weight of the polyurethane resin and up to
about 50 parts, e.g. 0-50 parts by weight of solvent. The
solvent of the composition can be a mixture of organic
solvents wherein the constituents of the urethane react.

Instead of the two-component or "two-package"
system, a "one package" coating can be used if the
reactive groups of the polyisocyanate are blocked with
a blocking agent such as a methylethyl ketoxime. This
eliminates the need for keeping the polyol apart from
the polyisocyanate until just before use. When the coat-
ing, with the blocked polyisocyanate, is applied and
heated the blocking agent is released, permitting the
polyisocyanate to react with the polyester polyl.

The blocking agents are used for purposes of masking
the free isocyanate radical of the polyisocyanates.
These agents include phenol, m-nitrophenol, p-chloro-
phenol, ethyl malonate, acetylacetone, ethyl acetoa-
tate, cresol, methanol, ethanol, ethylene, chlorophy-
drin, etc. Although the temperatures at which the
above-mentioned blocking agents are dissociated varies
with the agents, it is generally accepted that heating is
required to deblock.

The coating composition also can contain ultraviolet
light stabilizers, antioxidants, catalysts, wetting or dis-
spersing agents, e.g. anti-Terra-204 (carboxylic acid
salts of polyamine-amides), flow modifiers e.g. BYK-
320 (polyether modified methylalkyl polysiloxane co-
polymers), adhesion promoters, etc. The ultraviolet
light stabilizer can be present in an amount of 1-10% by
weight, based on the weight of the urethane binder. The
antioxidants can be present also in amounts of 0.1-3%
by weight of the urethane binder. Ultraviolet light stabi-
ilizers include benzophenones, triazoles, triazines, ben-
zoates, substituted benzenes, organophosphorous sul-
fides, etc.

The coating composition of this invention may con-
tain about 0.01-2.0% by weight, based on the weight of
the polymer forming blend, of a curing catalyst. The
catalysts are usually organo metallics such as dibutyl
tin dilaurate and zinc octoate, dibutyl tin dl-2-ethylhexoate,
stannous octoate, stannous oleate, zinc naphthenate,
vanadium acetyl acetonate, and zirconium acetyl ace-
tonate. Also useful as catalysts are tertiary amines, such
as, for example, triethylene diamine, triethyamine, pyr-
idine, dimethylaniline, and methyl morpholine. When a
two-component system is used, the catalyst can be
added to either the polyisocyanate or the solution of the
polyester polyl.

The coating composition of this invention can be ap-
plied to a variety of substrates by conventional appli-
cation methods such as spraying, dipping, brushing, or
flow coating. Substrates that can be coated with the
composition are, for example, metal, wood, glass, or
plastics such as polypropylene, polystyrene, and the
like. The coating is particularly suited for application
over pretreated or unpainted metal. The coating can be
cured at ambient temperatures or heated at 40°-120° C.
for up to an hour or more. If the coating contains a
blocked polyisocyanate, temperatures ranging up to
about 160° C. may be necessary.
The solvent may include a mixture of organic solvents, e.g., benzene, toluene, xylene, and naphtha. Ester solvents include the acetates, e.g., ethyl acetate, butyl acetate, hexyl acetate, amyl acetate, etc., propionates such as ethyl propionate, butyl propionate, etc. Ketone solvents include acetone, methyl-ethyl ketone, methyl-isopropyl ketone, methylisobutyl ketone, diethyl ketone, cyclohexanone, etc. Glycol ester solvents include ethylene glycol, monooethyl-ether acetate, etc.

In testing the coatings prepared in accordance with this invention, the corrosion protection for an aluminum substrate was found to be over 2000 hours in 5% salt spray in accordance with ASTM Test Method B-117 and over 500 hours in SO2/salt spray in accordance with ASTM Test Method G-85. The coating was found to have outstanding performance when exposed to extreme heat conditions, high intensity of light and water, extreme cold conditions, hot lubricating oils and other chemicals normally found in aircraft operations. By utilizing the coating composition of this invention, a corrosion resistant film can be obtained on various substrates. The coating therefore has properties which function as a primer and more important as a single topcoat which is highly adherent, flexible, chemical resistant and resistant to all weather conditions. The coatings of this invention lower the risk of failure due to cracking especially at low temperatures and are easily touched-up since only one coating need be applied. Since the coating requires only one coat, it requires less time for application and removal and thereby saves on manpower that would generally be needed in the preparation of a two coat system. Moreover, the present coating provides protection at lower film thicknesses thereby reducing the weight of the coating compared to a two-coat paint system which is an important factor when considering aircraft coatings.

It is obvious that there are other variations and modifications which can be made with respect to this invention without departing from the spirit and scope of the invention as particularly set forth in the appended claims.

The invention claimed:

1. A corrosion-resistant self-priming coating comprising from about 25 to 55 parts by weight of a polyurethane resin binder, 1 to 30 parts by weight of an alkaline earth metal phosphates, 0.1 to 5 parts by weight of a zinc benzoate, 5 to 35 parts by weight of an alkaline earth metal metaborate, 5.0 to 40 parts by weight of titanium dioxide, 0 to 3.0 parts by weight of an oil soluble dispersing agent and 0 to 50 parts by weight of at least one organic solvent.

2. The coating of claim 1 wherein the polyurethane ranges from about 30 to 50 parts by weight; titanium dioxide ranges from about 10 to 35 parts by weight, alkaline earth metal phosphate ranges from about 5 to 25 parts by weight, zinc benzoate ranges from about 0.5 to 3.0 parts by weight, alkaline earth metal metaborate ranges from about 10 to 30 parts by weight, the dispersing agent ranges from 0.1 to 1.0 parts by weight and the solvent ranges from about 15 to 35 parts by weight.

3. The coating of claim 1 wherein up to about 100 percent by weight of the total amount of titanium dioxide is in the form of vesiculated beads.

4. The coating of claim 2 wherein 0 to 50 percent by weight of the total amount of titanium dioxide is in the form of vesiculated beads.

5. The coating of claim 4 wherein the zinc benzoate is a salt of a substituted benzoic acid having one hydroxyl substituent and one nitro substituent.

6. The coating of claim 1 wherein the polyurethane is derived from hexamethylene diisocyanate and an aliphatic polyester polyol.

7. The coating of claim 6 wherein the polyurethane is derived from a polyisocyanate and a polyester polyol wherein the NCO to OH group ratios range from 0.85-1.4 to 1.0.

8. The coating of claim 6 wherein the NCO to OH ratio of the hexamethylene diisocyanate and the aliphatic polyester polyol is about 1.2 to 1.0.

9. The coating of claim 8 wherein the zinc salt of the benzoic acid has one hydroxyl and one nitro (NO2) substituent.

10. The coating of claim 9 wherein the polyester polyol and the polyisocyanate are reacted at a NCO to OH ratio of about 1.2 to 1.0.

11. The coating of claim 2 wherein the alkaline earth metal phosphate is a zinc-barium phosphate.

12. The coating of claim 2 wherein the alkaline earth metal phosphate is zinc phosphate.

13. The coating of claim 1 wherein the alkaline earth metal metaborate is barium metaborate.

* * * *

14. The coating of claim 1 wherein the polyurethane is derived from hexamethylene diisocyanate and an aliphatic polyester polyol.