<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADB285735</td>
</tr>
</tbody>
</table>

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies only; Proprietary Information; Oct 2001. Other requests shall be referred to USAMRMC, Ft. Detrick, MD 21702

AUTHORITY

USAMRMC ltr, dtd 28 Jul 2003

THIS PAGE IS UNCLASSIFIED
NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE U.S. GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

LIMITED RIGHTS LEGEND

Award Number: DAMD17-98-1-8172
Organization: The University of Alabama at Birmingham

Those portions of the technical data contained in this report marked as limited rights data shall not, without the written permission of the above contractor, be (a) released or disclosed outside the government, (b) used by the Government for manufacture or, in the case of computer software documentation, for preparing the same or similar computer software, or (c) used by a party other than the Government, except that the Government may release or disclose technical data to persons outside the Government, or permit the use of technical data by such persons, if (i) such release, disclosure, or use is necessary for emergency repair or overhaul or (ii) is a release or disclosure of technical data (other than detailed manufacturing or process data) to, or use of such data by, a foreign government that is in the interest of the Government and is required for evaluational or informational purposes, provided in either case that such release, disclosure or use is made subject to a prohibition that the person to whom the data is released or disclosed may not further use, release or disclose such data, and the contractor or subcontractor or subcontractor asserting the restriction is notified of such release, disclosure or use. This legend, together with the indications of the portions of this data which are subject to such limitations, shall be included on any reproduction hereof which includes any part of the portions subject to such limitations.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

[Signature]

[Date]
REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 4. TITLE AND SUBTITLE

Novel Vector System for Breast Cancer Therapy

2. REPORT DATE 5. FUNDING NUMBERS

October 2001 DAMD17-98-1-8172

3. REPORT TYPE AND DATES COVERED

Final (1 Oct 98 - 30 Sep 01)

6. AUTHOR(S)

Robert I. Garver, Jr., M.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

The University of Alabama at Birmingham
Birmingham, Alabama 35294-0111

E-Mail: rgarver@uab.edu

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution authorized to U.S. Government agencies only (proprietary information, Oct 01). Other requests for this document shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702-5012.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

The funds from this proposal have been used to develop a novel, sustained-release delivery system for tumor necrosis factor alpha (TNFα). Coacervate microspheres were made to contain TNFα that was released over 3 days. Efficacy testing by administering a single intratumoral dose of the sustained release preparation showed that it was superior to free-TNFα as either a stand-alone therapy, or in combination with other anti-neoplastic modalities. Additional studies described within suggest that this formulation could also be used as a means of targeting other anti-neoplastic modalities into tumors masses.

14. SUBJECT TERMS

breast cancer, drug delivery, controlled release, monoclonal antibody

15. NUMBER OF PAGES

27

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

Unlimited

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102
Table of Contents

Cover ..

SF 298 ..2

Table of Contents ..3

Introduction ...4

Body ..4

Key Research Accomplishments ..8

Reportable Outcomes ...8

Conclusions ..8

References ...

Appendices ..9-26
I. INTRODUCTION

This project was a breast carcinoma experimental therapeutics effort that examined the efficacy of a novel sustained release formulation of human recombinant tumor necrosis factor alpha (TNFα) in combination with adenovirus E1A products delivered by a conditionally replicative adenovirus. Shown here is an abbreviated version of the Statement of Work:

Task #1: Construct and characterize microspheres that contain and release tumor necrosis factor α (TNFα) over an extended period of time

Task #2: Identify a conditionally replicative adenovirus suitable for use in combination with the extended release TNFα formulation

Task #3: Evaluate individual and combined activity of dl338 virus and TNFα in vitro

Task #4: Evaluate the combined activity of dl338 virus and TNFα in vivo by intratumoral injection

Task #5: Evaluate combined activity of dl338 virus administered systemically and TNFα administered by intratumoral injection

BODY

For this final report, the progress towards completion of each task in the SOW will be described. Please refer to the figure legends that precede the figures themselves in the appendix.

Task 1

We have succeeded in demonstrating that can be encapsulated within a novel coacervate microsphere formulation comprised of human serum albumin and heparin, and released in a bioactive form over 3 days (refer to figs 1-3). The antitumor activity of these microspheres was assessed in human tumor xenografts on the flanks of nude mice by intratumoral injection of the microspheres. In experiments that assessed the dose response and compared tumor growth inhibition to the same doses of unencapsulated TNFα, it was repeatedly shown that the encapsulated TNFα was superior to the free, unencapsulated TNFα (refer to figs 4,5). These experiments completed Task 1.

Task 2

Our original proposal called for the use of an adenovirus partially deleted in the E1B region, dl338, as a conditionally replicative adenovirus. However, we established a collaboration with Dr. Paul Reynolds for the use of adenoviruses he had designed that were even more selective in replication within neoplastic tissues as opposed to normal tissue. These adenoviruses used the midkine (MK) promoter region to transcriptionally direct the E1 region, and he had data that indicated the MK promoter was more active in neoplastic tissues with the consequence that replication was better limited to neoplastic tissues as desired. Our earlier work (Garver et al, Cancer 1994) had shown that MK was strongly expressed in breast carcinomas, and this was another rationale for selecting these series of viruses. Three different MK viruses were selected:
"AdMKE1" which contained an intact E1 under transcriptional direction of MK, "AdMKE4/E1" that contained both E1 and E4 under transcriptional control of MK, and "AdMKE1/del19kd" that was similar to the dl338 virus in that the 19kd E1B was deleted but the remaining E1 was under transcriptional control of MK. By obtaining these viruses for use in this project, Task 2 was completed.

Task 3

Since adenovirus E1A products had been shown in earlier studies to enhance the toxicity of TNFα, we performed in vitro experiments that examined the effects of combining adenovirus infection with TNFα exposure on subsequent tumor cell line growth as quantified by the MTS colorimetric assay. These experiments were disappointing, finding little enhancement of TNFα-mediated killing in the A549 cell line with the AdMKE1, AdMKE4/E1 or the AdMKE1/19kd del. Note that all of these viruses replicated within these cells as evidenced by the marked reduction in viable cell number at higher MOIs, but the addition of TNFα over a wide dose range did not enhance the killing (figs 6-8). We also tried different schedules of virus and TNFα addition (figs 9-11) which failed to elicit any augmentation of killing by the combination of cytokine and virus. We also tried a second cell line, H11299 (fig 12-14) that also failed to show any benefit of combining the TNFα with the three different viruses. These experiments completed Task 3.

Tasks 4 and 5

These Tasks were animal experiments initially intended to confirm the anticipated positive in vitro results of combining TNFα with the conditionally replicative adenoviruses. We felt that the results did not justify the animal experiments as originally planned. Therefore, we modified our animal experiment plans to examine the combination of ionizing radiation with the sustained release TNFα. Following dose ranging pilot experiments that identified the appropriate TNFα intratumoral doing, we performed duplicate experiments on both A549 and H1299 tumor nodules that did show a significant enhancement of tumor nodule growth delay in groups treated with both radiation and TNFα compared with either treatment alone.

II. FIGURE LEGENDS

Fig. 1. Time-dependent release of TNFα from heparin-albumin coacervate microspheres in vitro from one representative lot. Ordinate: release of TNFα from microspheres as a percent of the total amount of cytokine encapsulated, abscissa: incubation time in days.

Fig. 2: Time-dependent release of TNFα from a different lot of heparin-albumin coacervate microspheres than shown in fig. 1.

Fig. 3. Time-dependent release of TNFα from another lot of heparin-albumin coacervate microspheres than shown in figs 1 and 2. In this case, the release is quantified on the ordinate in micrograms.
Fig. 4. Dose-response curve of H1299 tumor growth following intratumoral administration of free or encapsulated TNFα. Shown are the results of one representative experiment (n=6/grp) in which tumors received a single intratumoral administration of TNFα. The formulation and amount administered in micrograms is shown in the legend above.

Fig. 5. Dose-response curve of A549 tumor growth following intratumoral administration of free or encapsulated TNFα. Shown are the results of one representative experiment (n=6/grp) in which tumors received a single intratumoral administration of TNFα. The formulation and amount administered in micrograms is shown in the legend above.

Fig. 6. Effects of combined TNFα and adenovirus AdMKE1 infection on growth of A549 cells. Shown is the relative growth of cells 5 days after the addition of TNFα in the amount in micrograms shown in the legend above and infection with the AdMKE1 adenovirus containing a complete E1 transcription unit under control of the midkine promoter region. Cells with replicating virus would contain the viral E1A proteins that were expected to act synergistically with the TNFα to inhibit carcinoma growth. Data here is the average of two experiments, each data point performed in quadruplicate.

Fig. 7. Effects of combined TNFα and adenovirus AdMKE4/E1 infection on growth of A549 cells. Shown is the relative growth of cells 5 days after the addition of TNFα in the amount in micrograms shown in the legend above and infection with the AdMKE4/E1 adenovirus containing the E1 and E4 transcription units under control of the midkine promoter with a deletion of the E4 region. Data here is the average of two experiments, each data point performed in quadruplicate.

Fig. 8. Effects of combined TNFα and adenovirus AdMKE1/19kd-del infection on growth of A549 cells. Shown is the relative growth of cells 5 days after the addition of TNFα in the amount in micrograms shown in the legend above and infection with the AdMKE1/19kd-del adenovirus containing the E1 transcription unit under control of the midkine promoter with a deletion of the 19 kd E1B region. Data here is the average of two experiments, each data point performed in quadruplicate.

Fig. 9. Effects of combined TNFα and adenovirus AdMKE1/19kd-del infection when virus infection is followed by the addition of TNFα 24 hrs later ("Seq 1") on growth of A549 cells. Shown is the relative growth of cells 5 days after the addition of TNFα in the amount in micrograms shown in the legend above and infection with the AdMKE1/19kd-del adenovirus containing the E1 transcription unit under control of the midkine promoter with a deletion of the 19 kd E1B region. Data here is the average of two experiments, each data point performed in quadruplicate.

Fig. 10. Effects of combined TNFα and adenovirus AdMKE1/19kd-del infection when virus infection is followed by the addition of TNFα 4 hrs later ("Seq 2") on growth of A549 cells. Shown is the relative growth of cells 5 days after the addition of TNFα in the amount in micrograms shown in the legend above and infection with the AdMKE1/19kd-del adenovirus containing the E1 transcription unit under control of the midkine promoter with a deletion of the 19 kd E1B region. Data here is the average of two experiments, each data point performed in quadruplicate.
Fig. 11. Effects of combined TNFα and adenovirus AdMKE1/19kd-del infection when TNFα was added 48 hrs prior to virus infection for 4 hrs, followed by the addition of TNFα after infection ("Seq 3") on growth of A549 cells. Shown is the relative growth of cells 5 days after the addition of TNFα (second addition) in the amount in micrograms shown in the legend above and infection with the AdMKE1/19kd-del adenovirus containing the E1 transcription unit under control of the midkine promoter with a deletion of the 19 kd E1B region. Data here is the average of two experiments, each data point performed in quadruplicate.

Fig. 12. Effects of combined TNFα and adenovirus AdMKE1/19kd-del infection when virus infection is followed by the addition of TNFα 24 hrs later ("Seq 1") on growth of H1299 cells. This is similar to Fig. 9, except the cell line is changed.

Fig. 13. Effects of combined TNFα and adenovirus AdMKE1/19kd-del infection when virus infection is followed by the addition of TNFα 4 hrs later ("Seq 2") on growth of H1299 cells. This is similar to Fig. 10, except the cell line is changed.

Fig. 14. Effects of combined TNFα and adenovirus AdMKE1/19kd-del infection when TNFα was added 48 hrs prior to virus infection for 4 hrs, followed by the addition of TNFα after infection ("Seq 3") on growth of H1299 cells. This is similar to Fig. 11, except the cell line is changed.

Fig. 15. H1299 tumor nodule growth following combined intratumoral TNFα plus radiation therapy. H1299 tumor nodules were treated with radiation only ("H-XRT"), radiation plus free TNFα ("H-XRT-Free"), or radiation plus encapsulated TNFα ("H-XRT-encap"). Both TNFα groups employed 10 μg of TNFα. Growth is shown on the ordinate as the percentage of the starting tumor volume on day 0 ± SEM (n=6 mice/grp).

Fig. 16. H1299 tumor nodule growth following combined intratumoral TNFα plus radiation therapy. Duplicate experiment of that shown in fig. 15.

Fig. 17. A549 tumor nodule growth following combined intratumoral TNFα plus radiation therapy. Same as fig. 15, except the cell line is changed.

Fig. 18. A549 tumor nodule growth following combined intratumoral TNFα plus radiation therapy. Duplicate experiment of that shown in fig. 17.

III. BIBLIOGRAPHY

2. Abstract submitted for 2002 AACR meeting: Intratumoral Sustained Release TNFα As a Novel Radiosensitizing Agent"

7

IV. PERSONNEL SUPPORTED DURING GRANT DURATION

UAB: R.Garver
JHU: R.J. Song
S.Q. Liu

V. KEY RESEARCH ACCOMPLISHMENTS

- development of novel sustained-release delivery system for TNFα
- demonstrating enhanced efficacy of the sustained release formulation of TNFα compared with free TNFα for the direct inhibition of tumor nodule growth
- demonstrating enhanced efficacy of the sustained release formulation of TNFα compared with free TNFα as a radiosensitization agent
- demonstrating that the sustained release formulation of TNFα can enhance the delivery of therapeutic agents into tumor masses

VI. REPORTABLE OUTCOMES

a. Era of Hope Abstract Presentation 6/00
b. AACR abstract submitted 11/01: Administration of Sustained-Release TNFα into Human Lung Cancer Xenografts Radiosensitizes and Enhances Tumor Permeability
c. Manuscript in preparation based on data used for abstract described in VI.b.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

The pivotal experiments in Task 3 did not substantiate our original hypothesis: that combination of TNFα with adenovirus E1 products would enhance tumoricidal effects of either agent alone. The animal experiments showed that the sustained release TNFα was more efficacious than the free TNFα alone, and was additive when used in combination with external beam radiotherapy.

Since conclusion of this grant, we have extended the TNFα animal experiments, and also performed mechanistic experiments to explore the means by which TNFα and radiotherapy act more effectively. Further funding is being sought to extend these observations.
Human TNF-alpha release

Released TNF-alpha (ug/ml microparticles)

Incubation (days)

- Daily release
Figure 4

Encap v Free TNF alpha

Dose Response (H1299 Tumor Nodule)

Encap 50, Encap 10, Encap 1.0
Free 50, Free 10, Free 1.0, No Treat

Days Post Treatment

(Thousands)
Figure 5

Encap v Free TNF alpha
Dose Response (A549 Tumor Nodule)

% Tumor Growth (Thousands)

Days Post Treatment

Free100.0 Free 10.0 Free 1.0 NT
Free 50.0 Free 10.0 Free 1.0 NT
Encap 100.0 Encap 50.0 Encap 10.0 Encap 1.0
AdMKE1 + TNF

Figure 6

% Viable cells

- 0.0ng TNF
- 10ng TNF
- 100.0ng TNF
- 250ng TNF

mol 0 mol 0.5 mol 1.0 mol 10.0 mol 50.0
Figure 8

AdMKE1//19kd del+ TNF

0.0ng TNF 10ng TNF 100.0ng TNF 250ng TNF

% Viable cells

moi 0 moi 0.1 moi 0.5 moi 1.0 moi 10.0
Figure 9

AdMKE1//19kd del+ TNF

A549 SEQ 1

% Viable cells

0.0ug TNF 10.0ug TNF 100.0ug TNF 250.0ug TNF

moi 0.0 moi 0.1 moi 0.5 moi 1.0 moi 10.
AdMKE1//19kd del+ TNF

A549 SEQ 2

Figure 10

% Viable cells

0.0ug TNF 10.0ug TNF 100.0ug TNF 250.0ug TNF
AdMKE1//19kd del+ TNF

A549 SEQ 3
AdMKE1//19kd del+ TNF
H1299 SEQ 1

Figure 12

% Viable cells

0.0ug TNF 10.0ug TNF 100.0ug TNF 250.0ug TNF
AdmKE1//19KD del+ TNF

H1299 SEQ 2

moi 0.0 moi 0.1 moi 0.5 moi 1.0 moi 10.

% Viable cells

0.0ug TNF 10.0ug TNF 100.0ug TNF 250.0ug TNF

Figure 13
AdMKE1//19kd del+ TNF

H1299 SEQ 3

% Viable cells

0 100 200

0.0ug TNF 10.0ug TNF 100.0ug TNF 250.0ug TNF

moi 0.0 moi 0.1 moi 0.5 moi 1.0 moi 10.
Figure 15

TNF alpha +/- XRT #1

H1299 Tumor Nodule (minus NT grp)
TNF alpha +/- XRT #1

A549 Tumor Nodule (minus NT grp)
TNF alpha +/- XRT #2

A549 Tumor Nodule (minus NT grp)

--- A-XRT only

--- A-XRT+Free

--- A-XRT+Encap

Days

Figure 18
MEMORANDUM FOR Administrator, Defense Technical Information Center (DTIC-OCA), 8725 John J. Kingman Road, Fort Belvoir, VA 22060-6218

SUBJECT: Request Change in Distribution Statement

1. The U.S. Army Medical Research and Materiel Command has reexamined the need for the limitation assigned to technical reports written for this Command. Request the limited distribution statement for the enclosed accession numbers be changed to "Approved for public release; distribution unlimited." These reports should be released to the National Technical Information Service.

2. Point of contact for this request is Ms. Kristin Morrow at DSN 343-7327 or by e-mail at Kristin.Morrow@det.amedd.army.mil.

FOR THE COMMANDER:

[Signature]

PHYLIS M. RINEHART
Deputy Chief of Staff for
Information Management
ADB233865	ADB264750
ADB265530	ADB282776
ADB244706	ADB286264
ADB285843	ADB260563
ADB240902	ADB277918
ADB264038	ADB286365
ADB285885	ADB275327
ADB274458	ADB286736
ADB285735	ADB286137
ADB286597	ADB286146
ADB285707	ADB286100
ADB274521	ADB286266
ADB259955	ADB286308
ADB274793	ADB285832
ADB285914	ADB286590
ADB260288	ADB286348
ADB254419	ADB264839
ADB282347	ADB275123
ADB286860	ADB286590
ADB262052	ADB264002
ADB281670	ADB281670
ADB281622	ADB285876
ADB263720	ADB262660
ADB285876	ADB262191
ADB283518	ADB285797
ADB269339	ADB264584
ADB282777	ADB286185
ADB282896	ADB262261
ADB286247	ADB286127
ADB274629	ADB284370
ADB264652	ADB281790
ADB286578	