AD NUMBER
ADB284977

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies only; Proprietary Info.; Jun 2002. Other requests shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott St., Ft. Detrick, MD 21702–5012.

AUTHORITY
USAMRMC ltr, dtd 15 May 2003

THIS PAGE IS UNCLASSIFIED
Award Number: DAMD17-98-1-8198

TITLE: Roles of Breast Cancer Genes in DNA Homologous Recombination and Cellular Sensitivity to Radiation and Anticancer Drugs

PRINCIPAL INVESTIGATOR: Zhiyuan Shen, M.D., Ph.D.

CONTRACTING ORGANIZATION: University of New Mexico Health Sciences Center Albuquerque, New Mexico 87131

REPORT DATE: June 2002

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Distribution authorized to U.S. Government agencies only (proprietary information, Jun 02). Other requests for this document shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702-5012.

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE U.S. GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

LIMITED RIGHTS LEGEND

Award Number: DAMD17-98-1-8198
Organization: University of New Mexico Health Sciences Center

Those portions of the technical data contained in this report marked as limited rights data shall not, without the written permission of the above contractor, be (a) released or disclosed outside the government, (b) used by the Government for manufacture or, in the case of computer software documentation, for preparing the same or similar computer software, or (c) used by a party other than the Government, except that the Government may release or disclose technical data to persons outside the Government, or permit the use of technical data by such persons, if (i) such release, disclosure, or use is necessary for emergency repair or overhaul or (ii) is a release or disclosure of technical data (other than detailed manufacturing or process data) to, or use of such data by, a foreign government that is in the interest of the Government and is required for evaluational or informational purposes, provided in either case that such release, disclosure or use is made subject to a prohibition that the person to whom the data is released or disclosed may not further use, release or disclose such data, and the contractor or subcontractor or subcontractor asserting the restriction is notified of such release, disclosure or use. This legend, together with the indications of the portions of this data which are subject to such limitations, shall be included on any reproduction hereof which includes any part of the portions subject to such limitations.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.
Roles of Breast Cancer Genes in DNA Homologous Recombination and Cellular Sensitivity to Radiation and Anticancer Drugs

Zhiyuan Shen, M.D., Ph.D.

University of New Mexico Health Sciences Center
Albuquerque, New Mexico 87131
E-Mail: zshen@salud.unm.edu

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Distribution authorized to U.S. Government agencies only (proprietary information, Jun 02). Other requests for this document shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702-5012.

Mutations of the BRCA2 and BRCA1 tumor suppressor genes predispose humans to many forms of cancer, including breast and ovarian cancer. It has been suggested that BRCA1 and BRCA2 may serve as “caretakers” to repair DNA by interacting with RAD51. It is also possible that BRCA1 and BRCA2 interact with additional proteins to accomplish their functional roles in tumor suppression. We have focused our study on BRCA2. The first objective is to further characterize the role of BRCA2 in DNA homologous recombination and cellular sensitivity to DNA damage. Although the interactions between exon 11 of human BRCA2 with RAD51 have been extensively reported, little is known about the interaction between RAD51 and the C-terminal domain coded by exon 27 of BRCA2. We clarified the interaction between RAD51 and this C-terminal region of human BRCA2, and further demonstrated that its overexpression inhibits DNA double strand break-induced homologous recombination. The second objective is to identify new proteins that may interact with BRCA2. We have identified two new BRCA2-interacting proteins, BCCIP and ABP-280/filamin-1. We have performed extensive characterization on these interactions and published 2 papers and submitted another.
Table of Contents

Cover

SF 298

Table of Contents

Introduction

Body

Key Research Accomplishments

Reportable Outcomes

Conclusions

References

Appendices
A. Introduction
Mutations of the BRCA2 and BRCA1 tumor suppressor genes predispose humans to many forms of cancer, including breast and ovarian cancer. Although it has been suggested that BRCA2 and BRCA1 may serve as "caretakers" to repair DNA by interacting with RAD51, it is possible that they interact with additional proteins to accomplish their functional roles in tumor suppression. The ultimate goal of our research is to elucidate the mechanisms by which BRCA1/2 suppresses mammary tumorigenesis. This IDEA project has two scientific objectives.

- The first objective is to further characterize the functional role of breast cancer genes in recombinational DNA repair and cellular sensitivity to therapeutic DNA damage agents. We have encountered some difficulties to establish stable cell lines overexpressing dominant negative BRCA fragments. The technical approach was modified accordingly and our original scientific goals have been achieved. Unpublished data will be presented in this report.
- The second objective is to isolate and characterize additional BRCA-interacting protein(s). We have identified and characterized two new BRCA2-interacting proteins. The results of this study have been summarized in two peer-reviewed publications, and another submitted manuscript. We will briefly describe this study. The details can be found in appendices.

B. Body of final report
B1. Objective 1 (tasks 1, 2, 3 and 4), functional roles of BRCA in recombination repair.
The objective of tasks 1-4 is to investigate whether overexpression of dominant negative BRCA (dnBRCA) inhibits DNA homologous recombination and sensitizes cells to DNA damage. Although it is known that both BRCA1 and BRCA2 associate with RAD51 protein (1-5), it is controversial whether BRCA1 directly binds to RAD51 (for a review, see (6)). Therefore, we have directed our effort to focus on BRCA2 protein.

Interaction of the C-terminal domain of human BRCA2 with RAD51. The BRCA2 protein contains two putative regions for RAD51 interactions. One is coded by exon 11 that contains several BRC repeats. The other is coded by exon 27. We originally focused on several BRC repeats of BRCA2 protein (see Annual Report 1999). During the course of these studies, several labs reported that the overexpression of the BRC repeats coded by exon 11 of BRCA2 sensitizes cells to DNA damage and inhibits recombinational repair (3, 5, 7, 8). Therefore, we are less enthusiastic about exon 11 in order to avoid repeating the published studies. Although it was reported that the region coded by exon 27 of mouse BRCA2 interacts with RAD51 (2), it has not been confirmed whether the corresponding region of human BRCA2 also interacts with RAD51. It is not known whether this putative RAD51-interacting domain also plays a role in the regulation of recombinational DNA repair. Therefore, we focused our attention to the putative C-terminal RAD51 binding domain of human BRCA2. We made two fragments that contain this region, designated BRCA2-A (amino acids 3206-3310) and BRCA2-D (amino acids 3179-3418). BRCA2-A

![Image of experiment results]

Figure 1. The C-terminal region of human BRCA2 protein interacts with RAD51. Myc-tagged BRCA2-A or BRCA2-D was expressed in HeLa cells. The whole cell extract was precipitated with anti-Myc antibodies. Precipitated Myc-tagged proteins were detected by anti-Myc blot (top panel), and co-precipitated RAD51 was detected by anti-RAD51 blot (bottom panel). See text for more details.
corresponds to the mouse RAD51-interacting region (2). The BRCA2-D contains the C-terminal 240 amino acids of human BRCA2, including the putative RAD51-interacting region. We tested whether these fragments interact with human RAD51. As shown in Figure 1, both BRCA2-A and BRCA2-D can co-precipitate endogenous RAD51 protein. These data confirmed that the C-terminal region of human BRCA2 interacts with RAD51, providing bases for further studies (see below).

Task 1 was to establish stable cell lines with impaired BRCA2 function. The original design was to construct stable cell lines that overexpress dnBRCA by plasmid transfection. As reported in the 1999 annual report, we constructed several dnBRCA2 constructs, and failed to produce stable cell lines that overexpress these dnBRCA2 by using the strategies outlined in the original proposal. Therefore, we redirect this project to use retroviral infection in HT1080 cells, since HT1080 cells are very permissive to retrovirus. This redirection was proposed in previous annual reports and was approved by USAMRMC. We attempted retroviral infection to construct stable cell lines that express BRCA2-A or BRCA2-D. Similar to the plasmid transfection approach, the cell lines infected with the virus expressing BRCA2-A and BRCA2-D were not stable. We attribute this to the potential inhibitory effect of these fragments on cell growth. Since it is known that RAD51 protein is required for the cells to maintain normal growth, it is possible that overexpression of the RAD51-interacting domain may have impaired RAD51 function, thus inhibiting cell growth. Although this technical difficulty restricted us from doing more comprehensive analysis, it informs us that these BRCA2 regions possess important functions in cell growth control.

Tasks 2 and 3. To measure the spontaneous and double strand break (DSB)-induced homologous recombination in cells with impaired BRCA2 function. We originally planned to use stable cell lines established in task 1 to measure spontaneous and DSB-induced recombination. As described in task 1, we attempted both plasmid transfection and retroviral infection to construct stable cell lines expressing dnBRCA2, and failed. Therefore, we redirected the research to transiently co-transfect the plasmids expressing dnBRCA2. We collaborated with Dr. Mark Brenneman (formerly at Los Alamos National Laboratory, and now at University of New Mexico) to test the recombination in HT1080-1885 cells.
The cell system (HT1080-1885), generated by Dr. Mark Brenneman, is a human fibrosarcoma cell line that contains a recombination substrate organized as inverted repeats of the puromycin gene, \textit{Pac} (illustrated in Figure 2). The recipient copy of \textit{pac} expresses a truncated puromycin gene of no function due to the insertion of an I-SceI endonuclease site. The donor copy of \textit{pac} encodes a wild type puromycin gene, but is not expressed as it lacks a promoter. When a plasmid expressing I-SceI (p3NLS-I-SceI) endonuclease is transfected, a DSB on the recipient \textit{pac} gene can be introduced and thus a recombination between the donor and recipient copy may occur. This will result in a functional \textit{pac} gene, conferring puromycin resistance. Therefore, the appearance of puromycin-resistant phenotype represents a HR event at the \textit{pac} locus in the cells.

In collaboration with Dr. Brenneman, we co-transfected BRCA2-A and BRCA2-D with p3NLS-I-SceI into the cells, and measured the recombination frequency. As shown in Figure 3, overexpressions of BRCA2-A and BRCA2-D significantly inhibit DSB-induced homologous recombination. Therefore, this data suggest that the C-terminal RAD51-interacting domain is involved in the regulation of recombination. Since no stable cell lines can be constructed, spontaneous recombination frequency was not measured.

\textit{Task 4 is to determine whether the overexpression of dominant negative BRCA sensitizes cells to DNA damage.} Since no stable cell line was obtained, it was technically difficult to measure cellular sensitivity to the DNA damage agent by using colony formation assay. Therefore, this task was not attempted. However, the inability to construct stable cell line expressing dnBRCA2 itself suggests that the cells are sensitive to the dnBRCA2. It implies that the BRCA2 function is essential for cell growth.

In conclusion, our study focuses on the C-terminal RAD51 interacting region of BRCA2. We have shown that this domain of human BRCA2 protein interacts with RAD51. By using a transient transfection approach, we found that the C-terminal RAD51-interacting domain regulates DSB-induced homologous recombination. To date, these results are the first to report that the human C-terminal domain of human BRCA2 associate with RDA51 and regulate recombinational repair. Although the attempt to construct stable cell lines overexpressing this domain has failed, it suggests an important role of this region for cell growth control.

\textbf{B2. Objective 2 (task 5), identification of new BRCA-interacting proteins.}

The objective was to identify new proteins that may interact with BRCA2 or BRCA1. As justified in section B1 (page 4), we have concentrated our effort on BRCA2. We used a conserved region of BRCA2 as the bait in a yeast two-hybrid system, and identified two important proteins that interact with BRCA2, BCCIP and filamin-1. The details of these studies are published (appendices 1-3). Briefly, BCCIP is a \textbf{BRCA2, CDKN1A (Cipl/p2l) - Interacting Protein,} that has no significant homology to any known proteins. We have found that BCCIP gene is located at chromosome 10q26.1, a region associated with many human tumors, including advanced brain tumors, endometrial tumors, advanced prostate cancer, and some breast cancer. We also found that expression of BCCIP inhibits cell growth due to a delayed G1-S transition (Appendices 1 and 3), suggesting an important role for BCCIP in the regulation of cell growth.
and proliferation. The second BRCA2-interacting protein is the previously known protein, ABP-280 or filamin-1, which is an actin binding protein. We have found, for the first time, that this protein is also involved in DNA damage response. For more details, please see appendix 2. This study suggests an interplay of the DNA repair pathway with the cytoskeleton system.

B3. Objective 3, publications and grant application (task 6).
The objective of task 6 is to summarize data, and write new grant application based on the IDEA project. We have published two papers and submitted another (see appendix 1-3). In collaboration with Dr. Brenneman, we anticipate that another manuscript describing the data of C-terminal RAD51 binding domain of BRCA2 will be submitted. Based on the results of this IDEA project, the PI has secured a DOD-BRCP CDA award entitled “BRCA2-interacting proteins and breast cancer intervention.” (06/01/2002-05/30-2006, annual direct cost: ~59K). In addition, we have submitted a new NIH R01 grant application (see section D6 for details).

B4. Personnel receiving pay from their research effort
- Zhiyuan Shen, PI
- Wenhui Li, postdoctoral fellow
- Jinguei Liu, research scientist
- Xiangbing Meng, postdoctoral fellow

C. Key Research Accomplishments
- Confirmed the interaction of the C-terminal region of the human BRCA2 with RAD51.
- Discovered that the C-terminal RAD51 interacting region regulates recombinational repair.
- Isolated a new BRCA2 interacting gene, BCCIP, which is involved in regulation of cell cycle control.
- Discovered that the actin-binding protein ABP280/filamin-1 interacts with BRCA2, and identified a role of cytoskeleton proteins in DNA damage response.

D. Reportable Outcomes
D1. Manuscripts and abstracts, presentation:
Publications (see appendix for details).
Submitted manuscript (see appendix for full text)
Abstracts were presented at national conferences.

D2. Patents and licenses applied for and/issued:
None.

D3. Degree obtained:
None.

D4. Development of cell lines, tissue or serum repositories:
None.

D5. Informatics such as databases and animal models:
None.

D6. Funding applied for based on work supported by this award.

Funded new project
Funding agency: US MRMC-BCRP
Grant number: DAMD17-02-1-0515
Fund amount: ~$59K/year
Funding period: 06/01/2002-05/30/2006
Title: BRCA2-interacting proteins and breast cancer intervention
Description: This is a Career Development Award (CDA) that supports PI salary in order to relieve the PI from other academic commitments to focus on developing more breast cancer research programs.

Pending new project
Funding agency: NIH-NCI
Grant number: R01 CA93546
Fund amount: $175K/year
Funding period: 07/01/2003-06/30/2008
Title: Maintenance of Genetic Integrity in Mammalian Cells
Description: This is a new R01 application aimed to further characterize the functional role of BCCIP in DNA repair.

D7. Employment or research opportunities.
Not applicable.
E. Conclusions
We have shown that the C-terminal domain of human BRCA2 protein interacts with RAD51 protein, and that this domain is involved in the regulation of recombinational repair. In addition, this domain seems to be essential for cell growth control since overexpression of it results in inhibition of cell growth. We have also identified two new BRCA2-interacting proteins, BCCIP and filamin-1/ABP-280. These findings are potentially important to elucidate the mechanism by which BRCA2 suppresses breast cancer, and provide new insights to BRCA2's function. This project has resulted in 2 published, one submitted papers, and 9 presentations in national conferences. We anticipate at least one more paper will be submitted based on the work of this study.

F. References

G. Appendices
Inhibition of breast and brain cancer cell growth by BCCIPα, an evolutionarily conserved nuclear protein that interacts with BRCA2

Jingmei Liu1, Yuan Yuan1,2, Juan Huan2 and Zhiyuan Shen*1

1Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center; 915 Camino de Salud, NE, Albuquerque, New Mexico, NM 87131, USA; 2Graduate Program of Molecular Genetics, College of Medicine, University of Illinois at Chicago, 900 S. Ashland Ave. Chicago, Illinois, IL 60607, USA

BRCA2 is a tumor suppressor gene involved in mammary tumorigenesis. Although important functions have been assigned to a few conserved domains of BRCA2, little is known about the longest internal conserved domain encoded by exons 14-24. We identified a novel protein, designated BCCIPα, that interacts with part of the internal conserved region of human BRCA2. Human BCCIP represents a family of proteins that are evolutionarily conserved, and contain three distinct domains: an N-terminus acidic domain (NAD) of 30-60 amino acids, an internal conserved domain (ICD) of 180-220 amino acids, and a C-terminus variable domain (CVD) of 30-60 amino acids. The N-terminal half of the human BCCIP ICD shares moderate homology with regions of calmodulin and M-calpain, suggesting that BCCIP may also bind Ca. Human cells express both a longer, BCCIPα, and a shorter, BCCIPβ, form of the protein, which differ in their CVD. BCCIP is a nuclear protein highly expressed in testis. Although BCCIPβ expression is relatively consistent in cancer cells, the expression of BCCIPα varies in cancer cell lines. The BCCIPα gene is located at chromosome 10q25.3-26.2, a region frequently altered in brain and other cancers. Furthermore, expression of BCCIPα inhibits breast and brain cancer cell growth, but fails to inhibit HT1080 cells and a non-transformed human skin fibroblast. These results suggest that BCCIPα is an important cofactor for BRCA2 in tumor suppression. Oncogene (2001) 20, 336-345.

Keywords: BRCA2; calcium-binding protein; BCCIP

Introduction

The human tumor suppressor gene BRCA2 encodes a large protein of 3418 amino acids. Mutations of BRCA2 contribute to a significant portion of hereditary breast cancers. BRCA2 protein has no significant homology with any protein of known function. The overall homology between human and mouse BRCA2 is moderate at about 59%. Highly conserved regions (>75% homology) have been identified in human and mouse BRCA2. It is expected that important functions of BRCA2 reside in these conserved domains. Based on the functional analysis of the conserved BRCA2 domains, several models have been proposed for the role of BRCA2 in tumor suppression.

An N-terminus conserved domain in exon 3 (amino acids 48-105) has been implicated in transcriptional regulation of gene expression (Milner et al., 1997; Nording et al., 1998). Deletion of this region has been identified in breast cancers (Nording et al., 1998). Therefore, the transcription activity itself is directly relevant to tumorigenesis.

Although the overall sequence in exon 11 shows only moderate homology between mouse and human BRCA2, eight internal BRC repeats in exon 11 are highly conserved (Bignell et al., 1997). Each of the repeats is about 90 amino-acid long, and some of these repeats interact with RAD51 (Katagiri et al., 1998; Marmorstein et al., 1998; Wong et al., 1997). A conserved C-terminal BRCA2 domain (amino acids 3196-3232 of mouse BRCA2) also mediates BRCA2/RAD51 interaction (Sharan et al., 1997), and corresponds to a human BRCA2 C-terminus domain that is deleted in most truncating mutations of BRCA2. This region of mouse BRCA2 has 72% amino acid identity with human BRCA2. Functional analysis of these conserved domains in BRCA2 suggests that human BRCA2 may participate in RAD51-dependent DNA homologous recombination, thereby serving as a 'caretaker' of genome stability. Mutation of BRCA2 that directly affects these RAD51-interaction domains could result in genomic instability, and promote tumorigenesis (Chen et al., 1999; Yuan et al., 1999).

A third model involves the cellular localization of BRCA2 proteins. The functional nuclear localization signals (NLS) for BRCA2 have been identified near the C-terminus (Spain et al., 1999; Yano et al., 2000). Most of the BRCA2 mutations identified in breast cancers are truncations, resulting in deletion of the C-terminal NLS. It is possible that the lack of NLS in BRCA2 mutants results in abnormal cellular localization of BRCA2, preventing BRCA2 function (such as transcription and genome stability control), and subsequently responsible for tumorigenesis associated with BRCA2 mutation. This model may explain cases that involve the deletion of NLS in BRCA2 patients. However, some internal mutations, as exemplified by deletion of the transcriptional domain (Koul et al.,
BRCA2 may be a protein with multiple functional domains. Another highly conserved region precedes the C-terminus RAD51-interaction domain. This domain is the longest conserved domain in BRCA2. It covers exons 14–24 (Gayther and Ponder, 1998). The role of this region in tumorigenesis is unclear. It is anticipated that this conserved domain carries essential, yet to be identified, functions of BRCA2. It may possess cellular functions other than RAD51-associated DNA homologous recombination. Identification of novel proteins associated with BRCA2 would provide clues for additional BRCA2 functions.

Results and discussion

Identification of a BRCA2-interacting protein, BCCIPα

Amino acids 2883–3053 of BRCA2 (termed BRCA2H) forms the longest internal conserved region encoded by exons 14–24. BRCA2H is 78% identical between mouse and human, compared to the overall homology of 59%. Using Gal4-DB/BRC2AH as ‘bait’ in a yeast two-hybrid assay, we screened 4 x 10⁹ independent clones of a human cDNA library, and identified 14 interacting clones. DNA sequencing identified five clones that were derived from the same gene. Clone number 5 contained the longest cDNA, and encoded an open reading frame with a stop codon at the 3'-end, but no translation start codon at the 5'-end. This gene was assigned the symbol of BCCIP by the HUGO Gene Nomenclature Committee.

The sequence of our BCCIP cDNA was compared to databases of human EST. From the resulting analysis, we concluded that our clone was missing 42 nucleotides from the 5'-end. In addition, we discovered that some BCCIP cDNA have different 3'-end. The two types of cDNA encode protein of either 322 or 314 amino acids, and designated BCCIPα and BCCIPβ. BCCIPα and BCCIPβ have identical amino acids N-terminus 258 amino acids, but differ in their C-terminus (Figure 1a).

Further analysis showed that amino acids 45–100 of BCCIP shares 29% identity and 58% similarity to the Ca-binding domain of M-calpain (Figure 1b) (Pontremoli et al., 1999). The same region also shares homology with the N-terminus Ca-binding site of calmodulin. Calmodulin is composed of three distinct domains (Yjandra et al., 1999), an N-terminus calcium binding domain, a C-terminus calcium-binding domain, and an internal helix domain. In addition to the Ca-binding site, amino acids 100–150 of human BCCIP also share homology with the internal helix of calmodulin. Amino acids 50–150 of human BCCIP shares 26% identity and 45% similarity with amino acids 1–90 of the calcium binding regulator protein calmodulin (Yjandra et al., 1999) (Figure 1b). Therefore, BCCIP is a putative Ca-binding protein.

Finally, we identified BCCIP-homologous genes from C. elegans, S. cerevisiae, and A. thaliana. Their anticipated protein sequences share a common structural profile with human BCCIPα and BCCIPβ. All have an N-terminus acidic domain (NAD) rich in residues DE (aspartate and glutamate), an internal conserved domain (ICD), and a C-terminus variable domain (CVD) (Figure 2a).

The DE-rich NAD domain shares moderate homology with many proteins having acidic domains. The CVD shares no homology among BCCIP family members, except that mouse BCCIP and human BCCIPβ are ~70% identical. The ICD is evolutionary conserved among the species analysed. For example, human and mouse BCCIP share 97% similarity, while the yeast and plant BCCIP share about 70% similarity to human BCCIP (Figure 2a). The putative Ca-binding domain resides in the ICD (Figure 2b).

In vivo interaction between BCCIPα and BRCA2

In order to confirm the complex formation between BRCA2 and BCCIP in vivo, the proteins were expressed in 293 human kidney cells, and co-immunoprecipitation experiments were performed.

In the first experiment, HA-tagged BRCA2 fragments BRCA2α (amino acids 2883–3418) and BRCA2B (amino acids 2883–3194) were co-expressed with Flag-tagged BCCIPα in 293 cells. The HA-tagged BRCA2 proteins were precipitated with an anti-HA affinity matrix, and co-precipitated Flag-BCCIPα was detected by anti BCCIP antibodies. As demonstrated in Figure 3a, HA-tag alone (negative control) did not precipitate BCCIPα (Figure 3a, lane 4). However, BCCIPα was co-precipitated with both HA-BRCA2α and HA-BRCA2B (Figure 3a, lanes 5 and 6), suggesting that full-length BCCIPα interacts with the BRCA2.

In a second experiment, HA-tagged BCCIPα, UBC9, and RAD51 proteins were transiently expressed in 293 cells, and immunoprecipitated with the anti-HA affinity matrix. The precipitated HA-tagged proteins were detected with anti-HA tag (lower panel of Figure 3b). Co-immunoprecipitated endogenous BRCA2 proteins were detected by rabbit anti-BRCA2 antibodies (upper panel of Figure 3b). As demonstrated in the top panel of Figure 3b (lane 8), endogenous BRCA2 protein was precipitated with HA-RAD51 as previously demonstrated (Marmorstein et al., 1998; Tan et al., 1999), and HA-tag (Figure 3b, top panel, lane 5) and HA-UBC9 (Figure 3b, top panel, lane 7) did not precipitate BRCA2. However, HA-BCCIPα co-precipitated BRCA2. These data suggest a stable complex formation between full-length BRCA2 and BCCIPα in human cells.
A small region of BRCA2 is responsible for
BCCIP interaction

To further characterize the interaction between BCCIP\(x\) and BRCA2, we fused a series of BRCA2 fragments with the Gal4-DNA binding domain, and tested their interaction with Gal4-DNA activation domain fused BCCIP\(x\) protein using LacZ as reporter in the independent yeast strain SF526. As shown in Figure 4a, BRCA2H undoubtedly interacts with BCCIP; the minimum interacting region of BRCA2 is in amino acids 2973–3001.

To confirm this, a set of GST-fusion proteins of BRCA2 fragments was purified. GST-BRCA2 proteins were incubated with His-BCCIP\(x\) protein, and pulled down with glutathion beads. Bound His-BCCIP\(x\) proteins were analysed with Western blot. As shown in Figure 4b, GST protein and resin alone could not pull down His-BCCIP\(x\). However, BRCA2 proteins containing region 2973–3001 pulled down His-BCCIP\(x\), suggesting an interaction between His-BCCIP\(x\) and this BRCA2 region. This region is 71% identical between mouse and human BRCA2, significantly above the average homology between human and mouse BRCA2. Since purified proteins were used for the binding assay, this demonstrates that BRCA2 and BCCIP\(z\) form a direct protein–protein interaction.

Recombinant BCCIP\(x\) protein, BCCIP antibodies, and expression of BCCIP in human tissues

We subcloned the BCCIP\(x\) into pET28 and purified His tagged BCCIP recombinant protein from bacteria (Figure 5a, lane 2). GST tagged BCCIP\(x\) proteins were also purified (Figure 5a, lane 3). The His-BCCIP\(x\) was used to make rabbit polyclonal antibodies against BCCIP, and GST-BCCIP\(x\) was used to affinity purify...
proteins are highly expressed in testis, as are BRCA2 in tissues (Figure 5c), it is interesting that the BCCIP is hard to distinguish the bands for BCCIPc and BCCIPf. From DNA Technology Inc. Although the resolution of the pre-made membrane was compromised, and it is lower band (-46 kDa) is BCCIPo (322 amino acids), and the bottom panel is blotted with anti-HA antibodies, showing that the anti-BCCIP antibodies. These antibodies recognized the full-length BCCIPx, as well as the N-terminal common region between BCCIPx and BCCIPβ (data not shown). Therefore the polyclonal anti-BCCIPx antibodies also recognize BCCIPβ.

These antibodies are reactive to two species of proteins from human skin fibroblasts (HSF) and HT1080 fibrosarcoma cells (Figure 5b). Since BCCIPx shares significant homology to BCCIPβ, and the antibodies recognize the N-terminal common region of BCCIPx and BCCIPβ, we predict that the top band (~50 kDa) is BCCIPx (322 amino acids), and the lower band (~46 kDa) is BCCIPβ (314 amino acids).

A human tissue protein membrane was purchased from DNA Technology Inc. Although the resolution of the pre-made membrane was compromised, and it is hard to distinguish the bands for BCCIPx and BCCIPβ in tissues (Figure 5c), it is interesting that the BCCIP proteins are highly expressed in testis, as are BRCA2.

Figure 2 Domain analysis of BCCIP proteins (drawing not to scale). (a) Domain comparison of human BCCIP with its homologues in other species. According to the sequence conservation, the human BCCIP was arbitrarily divided into three domains: an N-terminal Acidic Domain (NAD), an Internal Conserved Domain (ICD), and a C-terminal Variable Domain (CVD). Numbers in the ICD of BCCIPs indicate the percentages of sequence identity and similarity of the specific BCCIP with human BCCIPx. (b) Sequence similarity of the putative Ca-binding domain in the internal conserved domain (ICD) of human BCCIP with human calmodulin and the region of M-calpain. Numbers in the parenthesis above the Ca-binding domains of calmodulin and M-calpain indicate their percentage of sequence identity and similarity to the putative Ca-binding site of human BCCIP.

Figure 3 In vivo protein complex formation between BRCA2 and BCCIPx. (a) Co-immunoprecipitation of BCCIPx with BRCA2 fragments. Lanes 1–3 are whole cell protein extracts from 293 cells transfected with various plasmids. Lanes 4–6 are the anti-HA matrix precipitated proteins from the whole cell extracts. Lanes 1 and 4 were derived from co-expression of Flag-BCCIPx and a control vector (pHA-CMV), lanes 2 and 5 were derived from co-expression of Flag-BCCIPx and HA-BRCA2B (amin acid 2883–3149), and lanes 3 and 6 are extracts from cells expressing Flag-BCCIPx and HA-BRCA2F (amin acid 2883–3418). The bottom panel is blotted with anti-HA antibodies, demonstrating that HA-BRCA2 and HA-BRCA2F are expressed in the total cell extracts (lanes 2, 3 and 4), and precipitated with anti-HA matrix (lanes 4 and 5). The top panel was blotted with anti-BCCIP antibodies, demonstrating that BCCIPx can be co-precipitated with the HA-BRCA2 and BRCA2F (lanes 5 and 6). This data suggest that a C-terminus of BRCA2 region containing amino acids 2883–3149 forms a complex with full-length BCCIPx. (b) Co-immunoprecipitation of endogenous BRCA2 from 293 cells with HA-BCCIPx. Lanes 1–4 are whole cell protein extracts (5 μg of each) from cells that were transfected with pHA-CMV (lane 1), pHA-CMV/BCCIPx (lanes 2), pHA-CMV/UBC9 (lane 3), and pHA-CMV/RAD51 (lane 4). Lanes 5, 6, 7 and 8 are Anti-HA resin precipitated proteins from whole cell extract as in lanes 1, 2, 3 and 4 respectively. The bottom panel is blotted with anti-HA antibodies, showing that the HA-BCCIPx (lanes 2 and 6), HA-UBC9 (lanes 3 and 7), and HA-RAD51 (lanes 4 and 8) are expressed in transfected cells (lanes 2, 3 and 4) and precipitated with anti-HA matrix (lanes 6, 7 and 8). The top panel demonstrates that the endogenous BRCA2 protein exists in 293 cells transfected with control vector (lane 1), pHA-CMV/BCCIPx (lane 2), pHA-CMV/UBC9 (lane 3) and pHA-CMV/RAD51 (lane 4), but was only co-precipitated when HA-BCCIPx (lane 6) or HA-RAD51 (lane 8) was expressed. This data suggest that a stable complex can be formed between the full-length endogenous BRCA2 and full-length BCCIP protein.
BRCA2/BCCIP interaction and tumor inhibition

J Liu et al

BRCA2(a.a. 1-3418) +
BRCA2H (a.a.2883-3001) +
BRCA2Q (a.a.2883-3032) +
BRCA2S (a.a.2883-3053) +
BRCA2I (a.a.2883-2978) +
BRCA2N* (a.a.2973-3032) +
BRCA2P (a.a.3047-3194) +
BRCA2K+

BCCIP beads GST

62kd
51kd
38kd
22kd

- - - -
- - - -
- - - -
- - - -

{pull-down His/BCCIP

Bead-bound GST fusion proteins

Figure 4 Mapping of BRCA2 regions that interact with BCCIP. (a) Results from two-hybrid analysis. *+* on the right side of the illustration indicates a positive interaction of the BRCA2 fragment (left side) with BCCIP in yeast two-hybrid system (drawing not to scale). The amino acid border of various BRCA2 fragments are listed in the parenthesis under the name of the BRCA2 fragment. (b) His-BCCIP protein that was co-precipitated with GST BRCA2 fusion proteins. Lane ‘BCCIP’ indicates the purified His-BCCIP protein loaded as positive control for Western blot. Lane ‘beads’ is loaded with co-precipitated His-BCCIP protein with glutathion beads. The rest lanes are the co-precipitated His-BCCIP proteins with GST or GST fusion proteins as labeled on the top of the panel. The same BRCA2 fragment nomenclature as (a) is used in this figure.

BCCIPz recombinant proteins, antibodies, and BCCIP protein expression in human tissues. (a) Commassie stained His-tagged BCCIPz and GST-tagged BCCIPz recombinant proteins that were used for polyclonal antibody production in rabbit and affinity purification. Numbers on the left indicate the locations of standard protein markers with corresponding size (kDa). (b) Two distinctive species of BCCIP are reactive to BCCIP antibodies in normal human skin fibroblasts (HSF) and HT1080 cells. The higher molecular weight band is designated BCCIPz (approximately 50 kDa), and the lower molecular weight band is designated BCCIP (approximately 46 kDa). Numbers on the right indicate the locations of standard protein markers with corresponding size (kDa). (c) BCCIPs are expressed in several human tissues, with the highest expression level in testis. The double-band pattern is not readily visible in the tissues in this illustration due to the compromised resolution of the pre-made membrane provided by DNA Technology. However, the same double-band pattern, as in (b), was observed with a lighter exposure (data not shown) in all the tissues.

BCCIPz is located on chromosome 10 at q25.3 – 26.2

We used BCCIPz cDNA as a probe for a FISH analysis. Among 100 mitotic cells analysed, 67 of them have paired FISH signals, and all of them were present near the end of chromosome 10q (Figure 7a). Further analysis mapped this gene to 10q25.3–26.2 (Figure 7b). To confirm this finding, we used the BCCIP sequence as probe to search a human chromosome database, and identified a marker (SGC33832) at chromosome 10q26.1. This marker has identical sequence to part of the BCCIPz cDNA. Therefore, this result confirmed that BCCIPz is present at 10q25.3–26.2, and is likely centered at 10q26.1.

Abnormalities in regions of chromosome 10q25.2–26.2 have been observed in many tumors, including brain tumors (Maier et al., 1997; Rasheed et al., 1995), endometrial tumors (Peiffer et al., 1995), lung cancers (Kim et al., 1998; Petersen et al., 1998), melanoma (Robertson et al., 1999; Walker et al., 1995), and other tumors (Ittmann, 1996). It has also been reported that the deletion of this region is responsible for develop-

Nuclear localization of BCCIP

To determine the cellular localization of BCCIP, we stained the breast cancer cell line MCF-7 with the affinity purified polyclonal BCCIP antibodies. As shown in Figure 6, BCCIP proteins are predominantly expressed in the nucleus. Under the same condition, pre-immuno serum did not react with the nucleus (data not shown). It is interesting that BCCIP reactive proteins do not colocalize with condensed chromosome DNA during mitosis (Figure 6a,c). Confocal microscopy of HeLa cells and human skin fibroblasts showed the same cellular distribution as MCF-7 cells (data not shown). We also expressed EGFP-tagged BCCIPz protein in HeLa cells, confirming that the majority of the BCCIPz protein localizes to the nucleus (data not shown).

(Sharan and Bradley, 1997) and RAD51 (Shinohara et al., 1993).

Oncogene
BRCA2/BCCIP interaction and tumor inhibition

J Liu et al

Figure 6 BCCIP localizes to nucleus in MCF-7 breast cancer cells. Shown in the figure is a cluster of nine MCF-9 cells. Affinity purified polyclonal anti-BCCIP antibodies were used for the immunostaining. Red signals from (a) are the anti-BCCIP antibody reactive proteins. Three mitotic cells with condensed DNA are indicated by arrows. The blue signals from (b) are DAPI stained cellular DNA, showing the nucleus and/or condensed chromosome DNA (arrows). (c) Shows both the DNA signal and BCCIP signals.

Figure 7 Chromosome location of BCCIP gene. (a) FISH analysis of BCCIP cDNA. The bright signal (arrow on the left panel) indicates the location of the BCCIP gene. The right panel is DAPI staining of the same mitotic cell showing chromosome 10. (b) The defined location of BCCIP on chromosome 10q25.3–26.2 (results from detailed band analysis of 10 individual cells).

Mental retardation in children (Tanabe et al., 1999; Taysi et al., 1982; Waggoner et al., 1999). At least one tumor suppressor is located in 10q25.3–26.2 (Petersen et al., 1998; Rasheed and Bigner, 1991; Rasheed et al., 1995). This tumor suppressor has been suggested to be responsible for brain tumors. A candidate tumor suppressor (DMBT1) was identified in this region (Mollenhauer et al., 1997). However, studies have shown that the status of DMBT1 in brain tumors has no connection with tumor phenotypes, suggesting that another gene in the region is responsible for brain tumors (Steck et al., 1999).

Expression of BCCIP proteins in cancer cells
To evaluate a possible association of BCCIP with human cancers, we examined BCCIPα and BCCIPβ expression in a number of cancer cell lines. As shown in Figure 8, the expression level of BCCIPβ is
Inhibition of breast cancer cell growth by BCCIPα

We further expressed HA-tagged BCCIPα protein in a few brain and breast cancer cell lines. As demonstrated in Figure 9, expression of HA-BCCIPα caused no significant cell growth delay in normal human skin fibroblast (HSF) or in HT1080 fibrosarcoma cells. However, when the same control vector virus and HA-BCCIPα virus were used to infect brain and breast cancer cell lines, the HA-BCCIPα caused a growth delay. As shown by the growth curve of infected HSF, HT1080, A172, and MCF7 cells (Figure 10a–d), HA-BCCIPα inhibited the growth of MCF7 and A172, but not HSF and HT1080. As shown in Figure 10e, the levels of exogenously expressed HA-BCCIPα in MCF7, A172, HT1080 or HSF are comparable to the endogenous levels of BCCIP. These data conclude that expression of BCCIPα inhibits the growth of some breast cancer and brain tumor cells.

Considering the interaction of BCCIP with known tumor suppressor BRCA2, the similar tissue expression pattern of BCCIP with BRCA2, the BCCIP chromosome location to a region that is frequently altered in various tumors, the reduced or lacking of BCCIPα expression in tumor cells, and the inhibition of tumor cell growth, it is conceivable to suggest that BCCIP might be a candidate tumor suppressor for breast and brain tumors. However, more extensive studies are required to test this hypothesis. These will include at least, but not limited to, the following studies: extensive expression and mutation analysis of BCCIP in primary tumor specimens, suppression of tumor phenotypes in tumor cells by introducing wild type BCCIP into tumor cells with relatively constant among these tumor cells, as compared to the protein level of β-actin. However, the level of BCCIPα varies significantly as compared to β-actin or BCCIPβ. Among the nine brain tumor cell lines (Figure 8a), A172 cells completely lack detectable BCCIPα expression, and U138MG and U118 showed reduced BCCIPα expression. Among the seven breast cancer cell lines (Figure 8b), MCF-7, SK-BR-3, and HS578T showed reduced BCCIPα expression. In the four cases of endometrial tumor cells (Figure 8d), two cell lines showed reduced BCCIPα levels, and two showed increased levels. However, the relative BCCIPα and BCCIPβ expression level was relatively consistent among the seven tested lung cancer cell lines (Figure 8c).
BRCA2/BCCIP interaction and tumor inhibition

J Liu et al

Figure 10 Growth inhibition of MCF7 breast cancer cells and A172 brain tumor cells by expression of HA-BCCIPα. The growth curves for HSF (a), A172 (b), MCF7 (c), and HT1080 (d) cells express HA-BCCIPα are compared with those of control cells. The representations of each marker are shown inside each panel of figures. (e) Is the immunoblot of the cells infected with control vector (lane A), or HA-BCCIPα (lane B) using anti-BCCIP antibodies. The exogenously expressed HA-BCCIPα is indicated on the right side of Figure 1e. As shown in this figure, the levels of exogenously expressed HA-BCCIPα are at about the same levels of endogenous BCCIPα or BCCIPβ in each of the cell lines. Numbers on the left are the locations of molecular weight markers (kDa). The specific cells used for the immunoblot are labeled on the top of the figure.

BCCIP mutation, and promotion of tumorigenesis/carcinogenesis by inhibition of BCCIP gene function in normal cells.

Searching the yeast genome database, we have identified a yeast strain that has the BCCIP open reading frame deleted. It is interesting that the BCCIP null mutation is lethal to yeast, suggesting an essential role for BCCIP in yeast. Further analysis of the yeast BCCIP mutant will be performed to provide clues to human BCCIP function.

To summarize, we identified a new protein, designed BCCIP that interacts with BRCA2. At least two isoforms of this protein are expressed in human tissues. BCCIP is evolutionarily conserved with several distinctive structural domains. A part of the internal conserved domain of BCCIP shares a moderate degree of homology with the a region of M-calpain and

Oncogene
calmodulin. BCCIPz inhibits brain and breast cancer cell growth. Further studies will be focused on its expression in human tumors and its functional role in tumorigenesis.

Materials and methods

Plasmids

A fragment of BRCA2 cDNA covering exons 21–24 was isolated using RT−PCR, and confirmed by sequencing. This fragment was linked with BamH1 and Sall sites, and fused to the Gal4-binding domain in the yeast two-hybrid vector pAS2-1, resulting in pAS2-1/BRCA2H. PCR primers tagged with BamH1/SalI sites were used to amplify regions of BRCA2 cDNA, and cloned into pGEX-5X (Pharmacia) to generate vectors that express glutathion S-transferase (GST) fused protein fragments of BRCA2. The same regions of BRCA2 were also cloned into the two-hybrid vector pGBT9, resulting in pGBT9/BRCA2H. to express Gal4-DNA binding domain fused protein in yeast. BCCIPz cDNA was cloned into pET28 (Novagen), creating pET28/BCCIPz, which expresses histidine tagged BCCIPz protein in BL21 (DE3) cells. BCCIPz cDNA was also cloned into pGEX-5X to generate pGEX/BCCIPz, which expresses recombinant GST-BCCIPz fusion protein in BL21 cells. All plasmid constructs were confirmed by DNA sequencing. Plasmids that express HA-UBC9 and HA-RAD51 are described as before (Li et al., 2000).

Recombinant proteins and BCCIPz antibodies

Recombinant protein expression and purification were performed as previously described (Shen et al., 1996b). Briefly, pET28 BCCIPz was transfected into BL21(DE3) cells, and the (His)6-tagged BCCIPz protein (His-BCCIPz) was expressed and purified. GST-BCCIPz and GST-BRCA2 fusion proteins were expressed and purified in BL21 cells using pGEX/BCCIPz and pGEX/BRCA2 vectors. His-BCCIPz was injected into rabbit to produce polyclonal anti-BCCIPz antibodies, and GST-BCCIPz was used for affinity purification of polyclonal anti-BCCIPz antibodies.

BCCIPz DNA sequence and human EST database analysis

Plasmids from positive clones of the two-hybrid screen were sequenced and data were analysed with DNA Star sequence analysis software. The GenBank nucleic acid and human EST databases were searched to identify matching ESTs. The complete cDNA sequence of BCCIPz was constructed from the cDNA sequence of our clones and matching EST databases.

Protein interaction assays

pAS2-1/BRCA2H was used to screen a cDNA library expressing Gal4-DNA activation domain fused proteins (Clontech, Palo Alto, CA, USA) as described (Shen et al., 1996a). MV103 cells hosting LacZ and Uracl, and Histidine reporters were used for the screen (Vidal, 1997). To confirm the two-hybrid interaction, an independent two-hybrid assay and in vitro GST pull-down assays were performed as described (Shen et al., 1996b). Briefly, various regions of BRCA2 cDNA were cloned into pGBT9. These vectors were co-transfected with pACT/BCCIPz and assayed for LacZ activity in the host cell strain SFY526 (Clontech, Palo Alto, CA, USA). GST-tagged BRCA2 fragments were bound to glutathione beads and incubated with His-tagged BCCIPz protein. After extensive washing, His-BCCIPz proteins bound to GST-fusion proteins were analysed by Western blot using anti-BCCIP antibodies.

Immunoprecipitation and immunoblotting

Cultured human cells were collected, treated with lysis buffer (150 mM NaCl, 1 mM EDTA, 50 mM Tris Cl, pH 7.5, 1% NP-40) for 30 min in ice, and sonicated, resulting in whole-cell extract. One mg of whole-cell extract was incubated with 50 μl of anti-HA Affinity Matrix (Roche Molecular Biochemicals) at 4°C on a rocker for 2 h. The matrix was washed six times in 1 ml of cold lysis buffer. Proteins bound to the beads were eluted in 2 x SDS sample buffer by boiling for 5 min, then resolved by SDS–PAGE and transferred to PVDF membrane (Osmotics). Immunoblotting using appropriate antibodies was as described before (Li et al., 2000). To detect BRCA2, a rabbit anti-BRCA2 antibody (Oncogene Researcher Products) was used.

Immunostaining and confocal microscopy

Cells were cultured on a cover slip, and fixed with cold 3% paraformaldehyde solution buffered with PBS for 1 h. Fixed slides were treated with permeabilization buffer (0.5% Triton X-100, 50 mM NaCl, 3 mM MgCl2, 300 mM sucrose, and 20 mM HEPES, pH 7.4) for 20 min. Slides were blocked with 2% BSA in PBS for 30 min at room temperature, and incubated with 1 μg/ml of primary anti-BCCIP antibodies overnight at 4°C. After the primary antibody incubation, the slides were washed five times with PBS, and incubated with rhodamin-conjugated anti-rabbit IgG antibodies (Pierce) for 30 min at room temperature. Slides were washed with PBS five times, and mounted with Vectashield mounting solution containing 4',6-diamidino-2-phenylindole (DAPI). Vector Laboratories, Burlingame, CA, USA). The slides were stored in the dark at 4°C. A Zeiss LSM510 confocal microscope with Ar/Kr and UV laser sources was used to observe the stained slides, and images of the cells were digitally recorded.

Retroviral vectors

The neomycin selection marker in pLXSN (Clontech) was replaced by a puromycin gene to produce a pLXSP vector bearing the puromycin selection marker. An HA-tagged BCCIPz cDNA was cloned into the EcoRI/XhoI site of the pLXSP. This vector was used to produce replication deficient virus in a package cell as described (Pear et al., 1997). Target cells were infected twice two times a day for 2 days. Thirty-six hours after the last infection, cells were treated with 1 μg/ml of puromycin for 48 h. The puromycin-resistant cells were changed to fresh medium and incubated for an additional 3 days and counted, or replated for growth curve determinations.

Other procedures

Western blots were performed as described previously (Li et al., 2000). Fluorescent in situ hybridization (FISH) was performed as described before (Shen et al., 1996a) using BCCIP cDNA as the probe. Tumor cell lines were purchased from ATCC.

Abbreviations

GST, glutathion S-transferase; BCCIP, Brca2, Ca and Cipl interacting protein; DAPI, 4', 6-diamidino-2-phenylindole; NAD, N-terminus acidic domain; ICD: internal conserved domains; FISH, fluorescence in situ hybridization; IPTG, isopropyl-β-D thiogalactopyranoside; LacZ, Lactose β-galactosidase; PBS, phosphate buffered saline; RT-PCR, reverse transcriptase polymerase chain reaction; RNAi, RNA interference.
domain; CVD, C-terminus variable domain; HSF, human skin fibroblast; FISH, fluorescent in situ hybridization.

Acknowledgments
We thank Drs Jac Nickoloff and Mark Brenneman for reviewing the manuscript and discussions. This research was supported by NIH NIEHS grant ES08353 and US Army Medical Research and Material Command under DAMD 17-98-1-8198. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of these funding agencies.

References
Interaction with BRCA2 Suggests a Role for Filamin-1 (hsFLNa) in DNA Damage Response*

Received for publication, March 21, 2001, and in revised form, September 21, 2001

Yuan Yuan§ and Zhiyuan Shen¶

From the *Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131 and the ¶Graduate Program, Department of Molecular Genetics, School of Medicine, University of Illinois, Chicago, Illinois 60607

The BRCA2 tumor suppressor plays significant roles in DNA damage response. The human actin binding protein filamin-1 (hsFLNa, also known as ABP-280) participates in orthogonal actin network, cellular stress responses, signal transduction, and cell migration. Through a yeast two-hybrid system, an in vitro binding assay, and in vivo co-immunoprecipitations, we identified an interaction between BRCA2 and hsFLNa. The hsFLNa binding domain of BRCA2 was mapped to an internal conserved region, and the BRCA2-interacting domain of hsFLNa was mapped to its C terminus. Although hsFLNa is known for its cytoplasmic functions in cell migration and signal transduction, some hsFLNa residues in the nucleus, raising the possibility that it participates in DNA damage response through a nuclear interaction with BRCA2. Lack of hsFLNa renders a human melanoma cell line (M2) more sensitive to several genotoxic agents including γ irradiation, bleomycin, and ultraviolet-c light. These results suggest that BRCA2/hsFLNa interaction may serve to connect cytoskeletal signal transduction to DNA damage response pathways.

Inherited BRCA2 mutations confer profound susceptibility to human breast and ovarian cancers (1, 2). BRCA2 participates in DNA repair through interactions with other proteins, notably RAD51 and BRCA1, that mediate homologous recombination (3–6) but is apparently not required for repair of DNA double-strand breaks by non-homologous end joining (7). The BRCA2 gene encodes a 3418-amino acid protein with very little homology to other known proteins (1, 2). The overall identity of BRCA2 is 58–59% between rodents (rat and mouse) and human, which is an uncommonly low level of conservation for a protein that participates in orthogonal actin network, cellular stress response, signal transduction, and cell migration (8). By comparing the amino acid sequences of mouse and human BRCA2, five highly conserved regions have been identified within BRCA2 and designated as Domain I through Domain V (8). It is expected that important functions of BRCA2 reside in these conserved regions.

Domain I resides in amino acids (aa)1-100 and is a putative transcriptional activation domain (10). Domain II (aa 1001-1051 of human, aa 980–1030 of mouse) and Domain III (aa 1089–1138 of human, aa 1072–1120 of mouse) reside in exon 11 (8), which also contains the eight loosely conserved BRC motifs (11) that mediate interaction with RAD51 (12, 13). The first BRC motif overlaps Domain II. Domain IV (aa 2479–3157 of human; aa 2400–3075 of mouse) is coded by exons 14–24 (8). Domain V (aa 3267–3316 of human; aa 3190–3238 of mouse) is encoded by exon 27 and also mediates BRCA2/RAD51 interaction (14). A putative nuclear localization signal also resides in exon 27 (15).

Domain IV is the longest of the conserved domains, yet the least understood. In mouse, two mutations delete some of the BRC repeats (truncation at aa 1492 deleting BRC repeat 4–8 and truncation at aa 2014 deleting BRC repeat 8), together with conserved Domains IV and V. Both result in partial lethality of embryos and infertility, as well as enhanced expression of p21 and p53 (4, 16–18). However, truncation of mouse BRCA2 at aa 3140, which preserves all of the BRC repeats plus Domain IV and deletes only Domain V, results in no p21 and p53 induction (19). Mice with this truncation have much higher rate of viability and are fertile.2 The difference in phenotype between truncation at aa 2014 and truncation at aa 3140 indicates that important functions might reside in Domain IV and its flanking BRC8 repeat.

Recently, a few protein interaction partners of Domain IV have been identified. A protein named DSS1 (Deleted in Split hand/Split foot) interacts with aa 2472–2957 within Domain IV (20). The function of human DSS1 is uncertain. The yeast DSS1 homologue (also termed SEM) plays roles in cell growth and differentiation (21). A second protein named hBUBR1 interacts with aa 2687–3176 of Domain IV and affects the phosphorylation status of BRCA2 (22). hBUBR1 and its yeast homologues contain a kinase domain, and may participate in mitotic checkpoint control (22–24). We have also identified a novel protein, designated BCCIP (Brca2, and cipl interacting protein) that interacts with Domain IV (25). BCCIP is an evolutionarily conserved protein that may participate in the regulation of tumorigenesis (25).

Here, we report an interaction of the BRCA2-conserved Domain IV with the actin-binding protein hsFLNa (human non-muscle filamin-1). hsFLNa (also known as ABP-280) is an actin cross-linking protein (26) that participates in cytoskeletal remodeling, signal transduction, and protein nuclear translocation (for a review see Ref. 27). hsFLNa interacts with several partners, including β1 and β2 integrins, Rho GTPase, SEK-1, and human androgen receptor (28–33). In addition, we report that hsFLNa-deficiency in human cells is associated with cell

1 The abbreviations used are: aa, amino acids; UV-C, ultraviolet-c; GST, glutathione-S-transferase; Co-IP, co-immunoprecipitation; HA, hemagglutinin; PBS, phosphate-buffered saline; DAPI, 4',6-diamidino-2-phenylindole; MAPK, mitogen-activated protein kinase.
2 P. Hasty, personal communication.

This research was supported by NIEHS National Institutes of Health Grant ES08353 and by the United States Army Medical Research and Materiel Command under DAMD17-98-1-8198. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

To whom correspondence should be addressed: Dept. of Molecular Genetics and Microbiology, Univ. of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, Tel.: 505-272-4291; Fax: 505-272-6208; E-mail: zshen@salud.unm.edu.

© 2001 by The American Society for Biochemistry and Molecular Biology.

Published, JBC Papers in Press, October 15, 2001, DOI 10.1074/jbc.M10257200
lular sensitization to DNA-damage agents such as γ irradiation, bleomycin, and UV-C. These data suggest a functional affiliation of hsFLNa with the DNA damage response pathway.

MATERIALS AND METHODS

Yeast Two-hybrid System—The yeast Matchmaker two-hybrid system (CLONTECH Laboratory, Palo Alto, CA) was used for a library screen as described in a previous publication (25). In brief, BRCA2H (aa 2883–3053), a BRCA2 fragment, was cloned into the Gal4-DNA binding domain (Gal4-DB) vector (pAS2-1) to screen a library of human lymphocyte cDNAs fused to the Gal4-DNA activation domain (Gal4-DA) vector (pACT). Mv103 cells were used as the host strain (34). An independent yeast host strain (SFY526) and vectors (pGBT9 and pGAD424) were used to confirm the interaction identified in the library screen. Yeast two-hybrid filter assays and liquid quantitative assays were performed according to the Matchmaker manual. pGbt9 and pGAD424 were used as negative controls.

Recombinant Proteins—To express a His-tagged hsFLNa fusion protein, an hsFLNa C-terminal fragment (aa 2250–2647) was cloned into pET28a (Novagen) and transformed into Escherichia coli BL21 (DE3). His/hsFLNa fusion protein expression and purification was performed as described previously (25, 35, 36). To fuse glutathione S-transferase (GST) with fragments of BRCA2, various coding regions of BRCA2 were amplified by PCR and cloned into pGEX-5X-1 or pGEX-5X-3. These plasmids were transformed into competent E. coli BL21, and the expression and purification of GST fusion proteins were performed as previously described (25, 35, 36).

In Vitro Protein Binding Assay—GST or GST/BRCA2 fragments bound to glutathione-Sepharose beads were incubated with 10 μg of purified His/hsFLNa (aa 2250–2647) in binding buffer (100 mM KCl, 50 mM Tris, pH 7.9, 1.5 mM MgCl2, 1 mM EDTA, 10% glycerol, 1% leupeptin) and sonicated for 30 s. Insoluble debris was removed by immunoblotting with anti-His antibody and anti-GST antibody (Santa Cruz). Protease inhibitor mixture (Sigma) was used in the lysis, binding, and washing buffers.

Co-immunoprecipitation (Co-IP)—Two BRCA2 fragments, BRCA2F (aa 2883–3418) and BRCA2B (aa 2883–3194), were cloned into pHA-CMV vector to tag them with the HA epitope. The C terminus of hsFLNa (aa 2250–2647) was cloned into pMyc-CMV vector to tag it with the Myc epitope. Plasmids were transfected into 293 human kidney cells using GenePorter transfection reagent (Gene Therapy Systems). Forty-eight hours after transfection, cells were collected, treated with lysis buffer (150 mM NaCl, 1 mM EDTA, 50 mM Tris-HCl, pH 7.5, 1% Nonidet P-40, 1× protease inhibitors (Boehringer)), sonicated, and centrifuged for 10 min at 10,000 ×g. The supernatant was taken as the cytoplasm/membrane fraction. The remaining nuclear pellet was centrifuged for 10 min at 10,000 ×g. The lysate was centrifuged at 14,000 rpm for 8 min, and the soluble fractions were retained as whole cell extracts. To prepare nuclear and cytoplasmic extracts, HeLa cells were trypsinized, washed in PBS and then in buffer X (25 mM HEPES/KOH, pH 7.5, 50 mM NaCl, 1 mM EDTA, 2.5 mM EGTA, 0.1% Tween 20, 10% glycerol, 10 mM β-glycerophosphate, 1 mM dithiothreitol, 1 mM NaF, 0.1 mM Na3VO4, 0.2 mM phenylmethylsulfonyl fluoride, 20 μg/ml aprotinin, 20 μg/ml leupeptin (Sigma), and sonicated for 30 s. Insoluble debris was removed by sedimentation at 14,000 rpm for 8 min, and the soluble fractions were retained as whole cell extracts. To prepare nuclear and cytoplasmic extracts, HeLa cells were trypsinized, washed in PBS and then in buffer X (25 mM HEPES/KOH, pH 7.5, 50 mM NaCl, 1 mM EDTA, 1× protease inhibitors (Boehringer)), pelleted, and resuspended in buffer X containing 0.5% Nonidet P-40 for 10 min on ice. The lysate was centrifuged at 15,000 rpm for 5 min at 4 °C. The supernatant was taken as the cytoplasm/membrane fraction. The remaining nuclear pellet was washed with buffer X containing 0.5% Nonidet P-40 and resuspended in the same buffer containing 1× loading buffer. The samples were then sonicated and boiled before loading onto the SDS-PAGE gel.

Cell Culture—Human M2 and A7 cells were kindly provided by Drs. T. P. Stossel and Y. Ohta (Brigham and Women's Hospital, Harvard Medical School). M2 and A7 cell lines were derived from M2 by stable transfecting with a plasmid expressing full-length hsFLNa cDNA (37). MCF-7 cells and Capan-1 cells were obtained from ATCC and cultured as recommended. All media contained 10% fetal bovine serum and 1% penicillin/streptomycin.

Genotoxic Sensitivity Assay—The number of cells to be plated for each assay was determined by a pilot experiment so as to yield 50–100 surviving colonies per 100-mm plate. For radiation sensitivity assay, 18 h after the cells were plated cells were irradiated with a Cs-137 γ ray (dose rate: 1.05 Gray/min). For UV-C sensitivity assay, the UV-C exposure was achieved at 1.3 J/m2/s dose rate. For bleomycin sensitivity assay, exponentially growing cells were treated with bleomycin for 2 h, trypanoized, and plated. In all the assays, cells were incubated for 12–14 days for colony formation. The colonies were stained with crystal violet and counted to determine cell viability. The number of colonies was normalized to the number of cells plated to calculate the surviving fraction.

RESULTS AND DISCUSSION

A C-terminal Domain of hsFLNa Interacts with BRCA2 in a Yeast Two-hybrid System—A portion of BRCA2 Domain IV comprising amino acids 2883–3053 (designated BRCA2H) was used as “bait” for a yeast two-hybrid screen. BRCA2H is 77% identical between human and mouse, compared with the over-all identity of 58–59% (8). Nine independent clones containing the C terminus of hsFLNa were isolated from a total of 4 × 106 independent clones. The interaction of these nine clones with BRCA2H was confirmed using a second, independent yeast two-hybrid system (SFY526 instead of MV103 as host yeast, pGbt9 instead of pAS2-1 and pGAD424 instead of pACT as vectors).

To further map the region of hsFLNa required for interaction with BRCA2H, defined C-terminal portions of hsFLNa was an elongated homodimeric, Y-shaped structure (26). Each monomer consists of an N-terminal actin binding domain followed by 24 tandem repeats, each ~96 amino acids in length. The last 65 amino acids of its C terminus contain a self-assembly sequence that allows dimerization. This repeat is separated from the previous 23 repeats by an ~34-amino acid "hinge" domain. Ten hsFLNa constructs containing tandem repeats and/or the hinge region, as described in Fig. 1, were cloned into pGAD424. Each of the ten constructs was co-expressed with Gal4-DB/BRCA2H fusion protein in SFY526 cells and tested for interaction. The largest construct tested, comprising as 2250–2647, represents the
Interaction with hsFLNa by a yeast two-hybrid system. A, ten regions of hsFLNa were fused with Gal4-DA and tested for interaction with Gal4-DB-fused BRCA2H. "+" indicates a positive interaction, and "-" indicates no detectable interaction in the two-hybrid system. The filled black ovals represent tandem repeats 21–24; the line between tandem repeat 23 and 24 represents the hinge region. The first construct contains the last 3–5 repeats. The next three constructs encode hsFLNa fragments progressively lacking tandem repeats from the N terminus. The following three contain the same sequence as the above three except lacking the C-terminal self-interaction domain. The last three encode hsFLNa fragments progressively lacking the self-interaction domain and the tandem repeats from the C terminus. B, a summary of several interacting proteins for hsFLNa.

minimum region of hsFLNa required for interaction with BRCA2. This region is also known to interact with several other proteins (Fig. 1B) (Please see Ref. 27 and citations therein).

Mapping of the hsFLNa-interacting Domain in BRCA2—To map the hsFLNa binding domain in BRCA2, four BRCA2 fragments were constructed: BRCA2H (aa 2883–3035), BRCA2Q (aa 2883–3036), BRCA2S (aa 2883–3001), and BRCA2N (aa 2973–3001) (Fig. 2A). These constructs were prepared according to the boundaries of the tandem repeats and the hinge region. The first construct contains the last 3–5 repeats. The next three constructs encode hsFLNa fragments progressively lacking tandem repeats from the N terminus. The following three contain the same sequence as the above three except lacking the C-terminal self-interaction domain. The last three encode hsFLNa fragments progressively lacking the self-interaction domain and the tandem repeats from the C terminus. B, a summary of several interacting proteins for hsFLNa.

We noticed that BRCA2Q (aa 2883–3036) interacts with hsFLNa in the yeast two-hybrid system but fails to bind hsFLNa in vitro and that BRCA2P (aa 2973–3001) contains aa 2973–3001 but fails to bind hsFLNa in vitro (Fig. 3C). This inconsistency may be caused by the different protein contexts of Gal4 versus GST fusions or the folding of the recombinant GST/BRCA2Q and GST/BRCA2P proteins such that the interaction domain is covered.

BRCA2 Interacts with hsFLNa in Vivo—To confirm that complex formation between BRCA2 and hsFLNa occurs in vivo, Co-IP was performed in mammalian cells. Both exogenously expressed and endogenous proteins were tested. Because smaller fragments of BRCA2 (BRCA2H, BRCA2Q, BRCA2S, and BRCA2N) exhibited limited solubility when tagged with an HA epitope (data not shown), longer BRCA2 constructs, BRCA2B (aa 2883–3194) and BRCA2F (aa 2883–3418), were used for exogenously expressed proteins. Both of the latter contain the minimal hsFLNa-interacting domain of BRCA2, aa 2973–3001. A C-terminal hsFLNa fragment (aa 2250–2647) was tagged with a Myc epitope. Myc/hsFLNa (aa 2250–2647) was co-expressed in 293 human kidney cells with HA/BRCA2B.
Filamin-1 and BRCA2 Interaction

48321

or HA/BRCA2F, or with empty HA vector or a non-relevant protein, HA/BCCIPα (25), as negative controls. The HA-tagged proteins were immunoprecipitated with anti-HA affinity matrix, and co-precipitated Myc/hsFLNa (aa 2250–2647) was detected by anti-Myc antibody. As shown in Fig. 4 (top panel), HA/BCCIPα (lane 6) or HA vector (lane 9) did not co-precipitate Myc/hsFLNa (aa 2250–2647). On the other hand, HA/BRCA2B (lane 7) and HA/BRCA2F (lane 8) co-precipitated Myc/hsFLNa (aa 2250–2647). These data suggest a stable complex between BRCA2 and hsFLNa in vitro.

To investigate the endogenous protein complex, MCF-7 and Capan-1 cells were used. MCF-7 expresses the wild type BRCA2 protein, while Capan-1 cell contains the 6174delT mutation that produces an ∼230-kDa C-terminally truncated protein lacking the hsFLNa interaction domain. We used an anti-BRCA2 antibody (Ab-1, Oncogene) that reacts with both the full-length and the 230-kDa-truncated BRCA2 protein for immunoprecipitation. The immunoprecipitated BRCA2 protein complex was immunoblotted with anti-hsFLNa and anti-BRCA2. As shown in Fig. 4B, both the wild type BRCA2 from MCF-7 cells and the truncated BRCA2 from Capan-1 cells were precipitated with the anti-BRCA2 antibody (lanes 3 and 4 of bottom panel). Both MCF-7 and Capan-1 cells express hsFLNa protein (lanes 1 and 2 of top panel). However, only the endogenous hsFLNa from MCF-7 was co-precipitated with BRCA2 (lane 3, top panel), but not from Capan-1 cells (lane 4, top panel). These further indicate that a stable complex exists in vivo between full-length BRCA2 and hsFLNa and that the C-terminal region deleted in Capan-1 cells is required for the interaction.

A Fraction of hsFLNa Resides in the Nucleus—BRCA2 has been described as a predominant nuclear protein (39). hsFLNa is thought to execute most of its functions in the cytoplasm (26, 27, 29–33, 40–42), although it may participate in nuclear-related functions (28). It might be argued that the interaction between hsFLNa and BRCA2 is not physiologically relevant since they apparently reside in different cellular compartments. To address this issue, we performed immunostaining of hsFLNa in human skin fibroblasts and Hela cells to observe the distribution of hsFLNa with confocal microscopy, which detects fluorescent signals from a thin intersection of 0.5 μm within the cells. The majority of hsFLNa was seen in the cytoplasmic compartment of the cells (Fig. 5, B, C, E, F), which is consistent with previous reports (26, 27, 29–33, 40–42). However, a moderate level of hsFLNa signal was seen in the nucleus as well, suggesting that a fraction of hsFLNa resides in the nucleus. To further demonstrate that hsFLNa exists in the nucleus, the cytoplasmic and nuclear proteins were extracted from Hela cells and analyzed by Western blot. As shown in Fig. 5G, hsFLNa protein was detected in both the cytoplasmic and nuclear fractions. YY1 and paxillin are used as nuclear and cytoplasmic controls, respectively.

Lack of hsFLNa Does Not Affect Cell Growth but Renders Cells More Sensitive to Genotoxic Agents—The diverse interaction partners of hsFLNa suggest its multiple functions in different cellular processes (27). Characterization of these interacting proteins has provided major insights into the roles of hsFLNa. For instance, hsFLNa was related to integrin signaling pathways through its association with β1, β2, and β3 integrins (33, 43, 44). A recent report suggested that hsFLNa is involved in DNA damage responses to DNA damage. To evaluate whether hsFLNa is also involved in DNA damage response, we used the hsFLNa-deficient human M2 melanoma cell line and an isogenic hsFLNa-proficient derivative line, A7. M2 (hsFLNa-) cells have impaired locomotion and display circumferential blebbing of the plasma membrane. The hsFLNa expression has been restored to approximately normal level in A7 cells by stable transfection with an hsFLNa expression vector. A7 cells have restored translocation motility and reduced membrane blebbing (37, 42). As confirmed in Fig. 6A, A7 cells express hsFLNa, but M2 cells do not. Lack of hsFLNa does not affect the growth
48322 Filamin-1 and BRCA2 Interaction

FIG. 4. In vivo interactions of BRCA2 and hsFLNa. A, Myc/hsFLNa (aa 2250–2647) interacts with HA/BRCA2B (aa 2883–3194) or HA/BRCA2F (aa 2883–3418), HA/BCCIPa, HA/BRCA2B (aa 2883–3194), HA/BRCA2F (aa 2883–3418), or empty HA vector was co-expressed with Myc/hsFLNa (aa 2250–2647) in 293 human kidney cells. The HA-tagged proteins were immunoprecipitated with anti-HA affinity matrix. Co-immunoprecipitated Myc/hsFLNa (aa 2250–2647) was detected by anti-Myc antibody (top panel), and HA-tagged proteins were detected with anti-HA antibody (bottom panel). Lanes 1–4 show the protein from whole cell lysate (WCL), and lanes 6–9 are the precipitated proteins. Lane 5 is a blank. Myc/hsFLNa co-precipitates with HA/BRCA2B (aa 2883–3194) (lane 7) and HA/BRCA2F (aa 2883–3418) (lane 8), but not HA/BCCIPa (lane 6) or the HA vector control (lane 9). B, endogenous BRCA2 interacts with hsFLNa. Whole cell lysate (WCL) from MCF-7 and Capan-1 cells were incubated with anti-BRCA2 (Ab1, Oncogene) that reacts with amino acids 1651–1821 of BRCA2 (Ab1). Oncogene) that reacts with amino acids 1651–1821 of BRCA2 in both MCF-7 and Capan-1 cells. The precipitated BRCA2 complex was immunoblotted with anti-hsFLNa antibody (top panel) and anti-BRCA2 antibody (bottom panel). In the bottom panel, full-length BRCA2 from MCF-7 (lane 1) or truncated BRCA2 from Capan-1 (lane 2) is detected in whole cell lysate as well as the immunoprecipitated complex (lanes 3 and 4). However, hsFLNa is only co-precipitated with the full-length BRCA2 in MCF-7 cells (lane 3, top panel) but not with the truncated BRCA2 in Capan-1 cells (lane 4, top panel). This figure shows that the endogenous full-length BRCA2 in MCF-7 co-precipitates the endogenous hsFLNa protein.

FIG. 5. Nuclear and cytoplasmic distribution of hsFLNa in human skin fibroblast (A–C) and HeLa (D–F) cells. A and D, the nucleus was visualized by DAPI staining (blue). B and E, hsFLNa was visualized as green. C and F, superimposed illustration for both the nuclear signals and hsFLNa signals. Bar, 20 μm. G, Western blot of hsFLNa distribution in cytoplasmic and nuclear fractions of HeLa cells. The whole cell lysate, nuclear, and cytoplasmic fractions of HeLa cells were separated by SDS-PAGE gel and blotted with hsFLNa antibody (top panel). The same membrane was re-blotted with anti-paxillin (cytoplasmic protein) antibodies (middle panel) and anti-YY1 (nuclear protein) antibodies (bottom panel) as positive controls for nuclear and cytoplasmic fraction, respectively. About three times more of nuclear extracts were loaded for Western analysis, as evidenced by the YY1 level.

of M2 cells in culture (Fig. 6B). A7 (hsFLNa+) and M2 (hsFLNa−) cells have similar plating efficiencies (50–70%). However, when treated with γ radiation, bleomycin, and UV-C light, M2 cells (hsFLNa−) were markedly more sensitive than A7 cells (hsFLNa+), as assessed in colony formation assays (Fig. 6, C–E).

DNA double-strand break is the major damage caused by ionizing radiation, which is repaired by a variety of pathways including recombinational repair. Bleomycin is believed to generate oxygen radicals that damage DNA in a similar manner to ionizing radiation. Whereas pyrimidine dimer is the major damage caused by UV-C light, which is predominantly repaired by nucleotide excision repair. As the results shown, deletion of hsFLNa caused increased sensitivity to several distinct genotoxic agents, establishing that hsFLNa plays an essential role for cells to survive DNA damage.

neous hsFLNa protein. However, the C-terminally deleted BRCA2 in Capan-1 cells could not co-precipitate endogenous hsFLNa protein. It not only demonstrates that the endogenous BRCA2 and hsFLNa interact but also demonstrates that the C-terminal region deleted in Capan-1 cells is required for the hsFLNa/BRCA2 interaction.
In summary, we have demonstrated an interaction between BRCA2 and hsFLNa by yeast two-hybrid analyses, an in vitro binding assay, and in vivo Co-IP. The interaction domains of BRCA2 and hsFLNa for this interaction have been mapped. The identified hsFLNa binding domain of BRCA2 resides in the conserved Domain IV of BRCA2 encoded by exons 14–24. This longest-conserved region of BRCA2 interacts with several other proteins as well, including DSS1 (20), BCCIPα (25), and hBUBR1 (22). These proteins are involved in a variety of cell functions, such as growth control, cell cycle regulation, and signal transduction. Therefore, Domain IV may be a particularly important region for the functions of BRCA2 in tumorigenesis. We have also found that deficiency of hsFLNa renders cells more sensitive to γ radiation, bleomycin, and UV-C light. The results suggest that the interaction between hsFLNa and BRCA2 may represent an important link between BRCA2-mediated DNA damage response and cytoskeletal signal transduction pathways.

Acknowledgments—We thank Drs. T. P. Stossel and Y. Ohta (Brigham and Women’s Hospital, Harvard Medical School) for generously providing the M2 and A7 melanoma cell lines, Jun Huan for an initial yeast two-hybrid analysis, Jingmei Liu for providing the hsFLNa, and Dr. Mark Brenneman for reviewing the manuscript.

REFERENCES

Filamin-1 and BRCA2 Interaction

38. Deleted in proof
Genomic structure of the human BCCIP gene and its role in G1-S transition

Xiangbing Meng, Jingmei Liu, Xu Guo, Zhiyuan Shen

Department of Molecular Genetics and Microbiology
University of New Mexico School of Medicine
915 Camino de Salud, NE
Albuquerque, NM 87131

Running Title: Genomic structure and function of human BCCIP.
Total Figures: 10
Total Tables: 2
Key words: BCCIP, Tok-1, BRCA2, DDX32, bi-directional promoter, G1-arrest, 10q26.1.

Footnotes:

1. To whom correspondence should be sent at email: zshen@salud.unm.edu.
2. The gene symbols of BCCIP and DDX32 used in this report are recommended by the HUGO Gene Nomenclature Committee.
4. Sequences in this report are deposited in GenBank with accession no. AY064247, AY064248, AY064249, and AY064250.
Abstract

Human BCCIPα (Tok-1α) is a BRCA2 and CDKN1A (Cip1, p21) interacting protein. Previous studies showed that BCCIPα can inhibit the growth of certain tumor cells. In this study, we report the genomic structure of the human BCCIP gene, which contains 9 exons. Alternative splicing of the 3'-terminal exons produces two isoforms of BCCIP transcripts, BCCIPα and BCCIPβ. The BCCIP gene is flanked by two genes that are transcribed in the opposite orientation of the BCCIP gene. It lies head-to-head and shares a bi-directional promoter with the uroporphyrinogen III synthase (UROS) gene. The last 3 exons of BCCIP gene overlap the 3'-terminal 7 exons of a DEAD/H helicase-like gene (DDX32). Using a matched normal/tumor cDNA array, we identified reduced expression of BCCIP in kidney tumor, suggesting a role of BCCIP in cancer etiology. In addition, we demonstrate that BCCIPβ also interacts with BRCA2. BCCIPβ inhibits cell growth by delaying G1-S transition, suggesting a functional role of BCCIP gene in cell cycle control.
Introduction

The human BCCIPα2,3 was identified as a BRCA2 and CDKN1A (Cip1/waf1/p21) Interacting Protein (Liu et al., 2001; Ono et al., 2000). A second isoform, BCCIPβ, has also been identified (Liu et al., 2001; Ono et al., 2000). These two isoforms, BCCIPα (322 amino acids) and BCCIPβ (318 amino acids), share 258 identical N-terminal amino acids. Homologues of human BCCIPα and BCCIPβ have been identified from various species, including *C. elegans*, *S. cerevisiae*, *A. thaliana*, and mouse. BCCIP proteins contain three distinct domains (Liu et al., 2001): the N-terminal Acidic Domain (NAD), the C-terminal Variable Domain (CVD), and the Internal Conserved Domain (ICD). BCCIPs from various species share no homology in their CVDs. However, their ICDs share significant homology. For example, human and mouse BCCIP share 97% similarity in the ICD, while the yeast and plant BCCIP share about 70% similarity to human BCCIP in their ICD. All the BCCIPs have an N-terminal acidic domain. The evolutionary conservation of the NAD and ICD regions suggests essential functional roles of BCCIP.

BCCIPα and BCCIPβ are nuclear proteins (Liu et al., 2001; Ono et al., 2000). BCCIP gene is abundantly expressed in many tissues, including skeletal muscle, heart, testis, kidney, and brain (Liu et al., 2001; Ono et al., 2000). Ono et al demonstrated that BCCIPα and BCCIPβ mRNAs reach their highest levels at the G1/S border and remain high in S-phase (Ono et al., 2000), a pattern also shown by *BRCA2, BRCA1, RAD51* and other genes involved in homologous recombinational repair (Bertwistle et al., 1997; Chen et al., 1997; Rajan et al., 1996; Vaughn et al., 1996; Yamamoto et al., 1996). The BCCIP gene is mapped to chromosome 10q26.1, loss of heterozygosity of which is associated with many forms of human cancers (Fujisawa et al., 1999; Fujisawa et al., 2000; Ittmann, 1996; Ittmann, 1998; Maier et al., 1998; Peiffer et al., 1995; Petersen et al., 1998; Rasheed et al., 1995; Rasheed et al., 1999; Walker et al., 1995). Some

Due to its interaction with BRCA2 and p21, it is anticipated that BCCIP is a gene of importance in cancer etiology, thus warrant further characterization. Here, we report the genomic organization of BCCIP, alternative splicing that produces two isoforms of BCCIP transcript, a bi-directional promoter that drives BCCIP gene expression, and expression levels of BCCIP transcripts in 68 cases of human cancer. We further demonstrated that BCCIPβ also interacts with BRCA2, and overexpression of BCCIPβ strongly inhibits cell growth and arrests cells at G1-phase.

Results and discussion

Genomic organization of BCCIP gene

We screened the human RPCI.11 BAC library array (Research Genetics), and obtained 2 BAC clones (569M14 and 634J20) that contain the BCCIP gene. We then performed direct DNA sequencing of the BAC clones (see Materials and Method) and identified the intron/exon boundary sequences. A sequence search of the human genome High Throughput Genomic sequence database identified a BAC clone (RP11-124H7) of chromosome 10 that contains the BCCIP gene (GenBank accession No. 16044807). Combining the sequence information from this entry and our own data, we composed a sequence segment of 70 kb (GenBank accession no. AY0642474), which was used to produce the diagram of the genomic organization at the BCCIP gene region (Figure 1).
The **BCCIP** gene contains 9 exons (Figure 1). At its 5'-end, the **BCCIP** gene abuts the uroporphyrinogen III synthase (**UROS**) gene (Aizencang et al., 2000a) in a "head-to-head" manner. There is a 278 bp intergenic region between the **BCCIP** and **UROS**. The three 3'-terminal exons of **BCCIP** overlap with the seven 3'-terminal exons of a DEAD/H helicase like gene, **DDX32** (GenBank Accession No. AY064250 and AF427340), which is transcribed on the opposite strand of the **BCCIP** coding strand.

Alternative splicing of BCCIP gene

All **BCCIP** exon-intron boundary sequences conform the GT-AG rule (Table 1). Comparison of the genomic sequence with the cDNA of **BCCIPα** and **BCCIPβ** (GenBank Accession No. AY06248 and AY06249) revealed that **BCCIPα** and **BCCIPβ** represent 3'-terminal alternative splicing products of a single human **BCCIP** gene (Figure 2). Exons 1-6 encode for the N-terminal shared 258 amino acids of **BCCIPα** and **BCCIPβ** isoforms, including the NAD (exon 1) and the ICD (exons 2-6). Exon 7 is specifically spliced to encode the CVD of **BCCIPβ**, and exons 8 and 9 encode the CVD of **BCCIPα** (Figure 2).

This 3'-terminal alternative splicing of **BCCIP** is analogous to that of Calcitonin/Calcitonin Gene-Related Peptide gene, one of the first examples of mammalian alternatively spliced genes (Amara et al., 1984; Amara et al., 1982; Lou & Gagel, 1998; Yeakley et al., 1993). In the case of Calcitonin, alternative splicing is used to generate tissue specific transcripts. Ono et al reported that **BCCIPα** isoform directly binds to p21 while **BCCIPβ** does not (Ono et al., 2000). However, we have found that both **BCCIPα** and **BCCIPβ** isoforms interact with BRCA2 (to be presented in
Figure 7). Therefore, it remains to be determined whether the alternative splicing is regulated to generate two isoforms of BCCIP proteins with specific biological activities.

BCCIP expression is driven by a bi-directional promoter

It is common for mammalian cells to use a shared bi-directional promoter to activate the transcriptions of two neighboring genes on the opposite orientations (Ame *et al.*, 2001; Chinenov *et al.*, 2000; Suen & Goss, 1999; Xu *et al.*, 1997). For example, a 218-229 bp region is responsible for the transcription of BRCA1 and the flanking NBR2 gene (Suen & Goss, 1999; Xu *et al.*, 1997). Since BCCIP and UROS are separated by 277 bases, and these genes are transcribed on opposite strands (Figures 1), we sought to determine whether the intergenic region between BCCIP and UROS contains promoter activities for both genes.

We constructed eight reporter plasmids by replacing the TK promoter in pTK-CAT (Figure 3A) with different DNA fragments of the intergenic region between BCCIP and UROS in both orientations (Figure 3C). These CAT constructs were co-transfected into COS7 cells with the pCH110 plasmid (Figure 3B), which was used as an internal control for the transfection since it expresses β-Gal reporter gene constitutively from a SV40 promoter. The ratio of CAT activity to β-Gal activity represents the relative promoter activity in the CAT constructs. The pTK-CAT plasmid (Figure 3A) was used as a positive control, and a CAT plasmid without any promoter sequence was used as a negative control. As Figure 3D shows, the 277 bp region between the UROS and BCCIP contains promoter activities in both orientations at a level comparable to the TK promoter. Therefore, BCCIP and UROS genes share an intergenic bi-directional promoter for their expression. We further determined that an 80 bp of sequence (contained in fragments UROS3 and BCCIP-5) proximate to the UROS gene has basal transcription activity in both directions.
However, the transcription activity of this short region in the BCCIP orientation is significantly reduced (compare BCCIP-5 and full-length BCCIP fragments). Extending the length of promoter region from bases 1-80 to bases 1-137 significantly increase the transcription activity (compare BCCIP-5 with BCCIP-6). But, further extending the promoter from bases 1-137 to bases 1-207 reduces the transcription activity (compare BCCIP-6 to BCCIP-7). Lastly, the BCCIP-3 fragment (bases 81-277) has significant lower transcription activity than all others. These data suggest that there may be positive and negative regulatory elements between bases 81-277 that play roles for the fine-tuning of BCCIP gene expression. A putative enhancer element between bases 80-139 was identified by sequence analysis (see Figure 4), but no negative regulatory element was seen by the same analysis (see Material and Method for details of promoter sequence analysis). We further identified several potential binding sites of transcription factors in the promoter region, including SP1, YY1, AP-1, AP2, and PEA2 (Figure 4).

Expression of BCCIP in human tissues

We tested the BCCIP mRNA level in several human tissues. As Figure 5 shows, BCCIP mRNA is highly expressed in skeletal muscle and heart tissues, consistent with previous reports (Liu et al., 2001; Ono et al., 2000). We also found an abundant expression of BCCIP mRNA in kidney, liver and placenta tissues. The high levels of expression of BCCIP in skeletal muscle, liver, and heart are consistent with that of the housekeeping UROS gene that is transcribed from the same bi-directional promoter (Aizencang et al., 2000a; Aizencang et al., 2000b).

BCCIP expression in human cancers
BCCIPα protein interacts with BRCA2 and p21, which participate in DNA repair and cell cycle control. BCCIP gene is also located in chromosome 10q26.1, which is associated with many human cancers (Fujisawa et al., 1999; Fujisawa et al., 2000; Ittmann, 1996; Ittmann, 1998; Maier et al., 1998; Peiffer et al., 1995; Petersen et al., 1998; Rasheed et al., 1995; Rasheed et al., 1999; Walker et al., 1995). We previously measured the BCCIP protein levels in 27 cancer cell lines (Liu et al., 2001), and found that 3 out of the 9 brain tumor cell lines, 3 out of the 7 breast cancer cell lines, and 2 out of 4 endometrial cancer cell lines exhibited reduced BCCIPα protein levels. These data suggest a potential role of BCCIPα in cancer etiology. We further measured BCCIP mRNA expression in 68 cases of human tumors (Table 2). This was done with a Matched Tumor/Normal Expression Array (see Material and Methods for details). Each cDNA on this array is directly derived from mRNA of human tumor samples with a matched normal tissue. As certified by the manufacturer, the cDNA levels on the array were normalized to cell type within the same tissue and directly reflect the relative abundance of mRNA levels between tumor and normal tissues of the same organs. Thus it can be used to compare the relative expression level of a specific gene between the normal and tumor of the same tissue. We used a cDNA fragment from exon 7 as the BCCIPβ-specific probe, and a cDNA fragment containing exons 8 and 9 as the BCCIPα specific probe, and analyzed the expression levels of BCCIPα and BCCIPβ in these tumor samples. The levels of ubiquitin mRNA were used as the internal control as recommended by the manufacturer of the cDNA array.

Figure 6 shows the relative BCCIPα (6A) and BCCIPβ (6B) mRNA levels in the tumor samples. A major observation is that the majority of kidney tumors exhibit reduced BCCIPα and BCCIPβ mRNA expression. The average BCCIPα and BCCIPβ mRNA levels from the 15 kidney tumors are significantly lower than their matched normal tissues (p<0.005, t-test). In addition, 1 of
9 breast cancers and 1 of the 15 kidney cancers lack detectable BCCIPβ mRNA, 2 out of 11 colon cancer and 1 out of 7 uterus cancer have 10-100 fold reduction of BCCIPβ mRNA levels as shown in Figure 6B. These data further implicate BCCIP in cancer etiology.

Interaction between BCCIPβ and BRCA2

We initially identified the interaction between the BCCIPα isoform and BRCA2 (Liu et al., 2001). We further mapped the BRCA2-interacting domain to amino acids 59-167 of BCCIP (data not shown). Since this BRCA2-interacting domain is identical in BCCIPα and BCCIPβ, we tested whether BCCIPβ also interacts with BRCA2 using Co-IP (Figure 7). In all the Co-IP experiments, the Benzonase nuclease (Novagene) was used to treat the protein samples to eliminate the interference of DNA/RNA on protein complex formation. We co-precipitated endogenous BCCIPα and BCCIPβ with anti-BRCA2 antibodies in HeLa cells (Figure 7A). To confirm this result, Myc-tagged BCCIPα and BCCIPβ were expressed in HeLa cells and precipitated with anti-Myc antibodies (Figure 7B). RAD51 was used as positive control, and UBC9 and RAD52 were used as negative controls. As expected, endogenous BRCA2 co-precipitated with RAD51, BCCIPα, and BCCIPβ, but not RAD52 or UBC9. These data confirm that BCCIPβ also interacts with BRCA2.

Growth inhibition conferred by overexpression of BCCIPβ

We have reported that overexpression of BCCIPα moderately inhibits certain breast cancer cell growth (Liu et al., 2001). These data were obtained from stable cell lines constitutively overexpressing BCCIPα. To test whether BCCIPβ also inhibits cell growth, we attempted to construct stable cell lines constitutively overexpressing BCCIPβ but failed, suggesting that
BCCIPβ strongly inhibits cell growth. To confirm this prediction, we cloned BCCIPα and BCCIPβ into a mammalian expressing vector with puromycin selection marker, transfected equal amounts of those vectors into HeLa, and HT1080 fibrosarcoma cells, selected the transfected cells in puromycin for two weeks, and stained to visualize the grown cells. As shown in Figure 8A, compared to cells transfected with control vector, there are less cells grown when transfected with BCCIPα and no cells grown when transfected with BCCIPβ, although approximately equal amount of BCCIPα and BCCIPβ proteins were detected shortly after the transfection (Figure 8B). These data suggest that BCCIPβ has stronger inhibition on cell growth than BCCIPα. Furthermore, we constructed a doxycycline(Doc)-inducible BCCIPβ overexpressing cell line using the pTet-ON and pREV-TRE vectors (See Material and Methods) in HT1080 cells, designated HT1080/TetOn-BCCIPβ (Figure 9A). As shown in Figure 9B, when BCCIPβ overexpression is induced, the growth of HT1080 cells is severely inhibited. These data confirm that BCCIPβ also inhibits cell growth.

Delayed G1-S transition induced by overexpression of BCCIPβ

To investigate the mechanism by which BCCIPβ inhibits cell growth, we used flowcytometry to analyze the nuclear DNA content of the cells after BCCIPβ is overexpressed, and observed a shift of cell cycle distribution to G1-phase (data not shown), suggesting a G1-delay. To confirm this, we treated cells with 10μg/ml of nocodazole (Noc) to block cells at M phase so that no new G1 cells can be generated. Therefore, the gradual disappearance of the G1 peak can be used to evaluate the dynamics of the G1-S transition. At several time points after Noc treatment, cells were collected and analyzed for DNA content by flow cytometry. As shown in Figure 10, the G1 phase peak nearly disappeared for the control cells within 8-16 hours (columns 1 and 2), but a
significant amount of BCCIPβ-overexpressing cells remains in G1 phase, even 24 hours after the Noc blocking (column 3). These data suggest that BCCIPβ suppresses cell growth by inhibiting G1-S transition.

In summary, we have delineated the genomic organization of the human BCCIP gene and identified a bi-direction promoter for BCCIP and UROS expression. Our results show that BCCIPα and BCCIPβ are products of 3'-terminal alternative splicing of a single gene located at chromosome 10q26.1, and that BCCIP expression is reduced in certain tumors. We further identified a functional role of BCCIPβ in cell growth control and G1-S transition.

Materials and methods

Isolation and sequencing of BAC clones

The BCCIPα cDNA isolated previously (Liu et al., 2001) was used as a probe to screen the RPCI11 BAC library (Research Genetics, Huntsville, AL). The BAC clones (569M14 and 634J20) were identified and BAC DNAs were purified according to protocols provided by the vendor. Primers at the 5'- and 3'-ends of cDNA were initially used to directly sequence the BAC DNA using the BigDye™ Terminator RR Mix kit (PE Applied Biosystems, Foster City, CA) and an automated DNA sequencer. These sequence data revealed the intron/exon junctions of the first and last exons of BCCIP. Subsequently, new primers from the neighboring exons and introns were synthesized to sequence the BAC clones (primer walking). Thus, the sequences of intron/exon junctions and the promoter were identified. We searched the human genome High Throughput Genomic sequence database, and identified a sequence entry based on chromosome 10 BAC clone RP11-124H7 containing the BCCIP gene (GenBank accession no. 16044807). Combining the
sequence information from this entry and our own sequence data, a 70 kb segment of genomic sequence that contains the entire BCCIP was composed and submitted to GenBank (accession no. AY064247).

Analysis of the BCCIP promoter

The Gal4 binding sites in the plasmid pGAL4-TKCAT (Shi et al., 1991) were removed by Hind III and Xba I digestion and religation, resulting a new reporter plasmid designated pTK-CAT. A panel of CAT reporter plasmids was constructed by replacing the TK promoter in pTK-CAT with various regions of the putative BCCIP promoter. To test promoter activities, 4μg of the CAT reporter plasmids were co-transfected into COS7 cells, together with 0.2μg pCH110 (Amersham, Piscataway, NJ), which expresses β-Gal protein from a constitutive SV40 promoter. Forty-eight hours after transfection, whole cell extracts were prepared, and CAT and β-Gal activities were measured by CAT and β-Gal ELISA kits (Boehringer Mannheim, Indianapolis, IN) and the SPECTRAmax Plus384 microplate spectrophotometer with the SOFTmax PRO data analysis program package (Molecular Devices Corporation, Sunnyvale, CA). The ratio of concentrations between CAT to β-gal represents the transcription activity of the promoters in a specific CAT reporter plasmid. Putative transcription factor-binding sites were identified by scanning the promoter sequence with the Tfsitescan program provided by the Institute of Transcriptional Informatics (Pittsburg, PA) at the website http://www.ifti.org/cgi-bin/ifti/tfsitescan.pl. Only the putative sites with significant Expectation values were presented.

Northern Blot Analysis
A pre-made multiple-tissue Northern blot was purchased from Clontech (Palo Alto, CA). This blot was hybridized with 32P-dCTP labeled cDNA of exons 1-6 of BCCIP according to the protocol provided. A β-Actin probe was used as a control for the hybridization as suggested by the manufacturer.

Expression of BCCIP in human tumors

To measure the mRNA expression of BCCIP gene in human tumors, a Matched Tumor/Normal Expression Array was purchased (Clontech, Catalog No. 7840-1). The amount of cDNA on this array was normalized to levels of three different housekeeping genes and cell types within the same tissue, and thus reflect the relative abundance of mRNA levels in these tissues. We labeled exon 7 with 32P-dCTP and hybridized with the array to detect BCCIPβ mRNA, and exons 8 and 9 to detect BCCIPα level. The hybridized array was scanned with a Molecular Dynamics Phosphorimager, and the SPOTFINDER™ software provided. The signal from each normal and tumor samples was normalized to the mRNA levels of ubiquitin in the same sample as recommended by the manufacturer.

Cell culture and construction of doxycycline (Doc)-inducible BCCIPβ expression.

HeLa and HT1080 cells were cultured in DEME and αMEM (Biowhiter) respectively with 10% fetal calf serum, 1% Penicillin/Streptomycin, and 2mM glutamine. Doc-inducible overexpression of BCCIPβ in HT1080 cells were established by pRevTet-ON system and the RetroPack™ PT67 packaging cell lines according to the manuals provided by the manufacturer (Clontech, Palo Alto,
CA). This cell line, designated HT1080/TetOn-BCCIPβ, was maintained in the absence of Doc. Doc-inducible BCCIPβ expression was confirmed by anti-BCCIP immunoblot (Figure 9A).

Co-immunoprecipitation (Co-IP) and Western blot

To co-precipitate endogenous BCCIP with endogenous BRCA2, cells were lysed in lysis buffer (50mM HEPES pH7.6, 250mM NaCl, 5mM EDTA, 0.1% Nonidet P-40). This lysed protein solution was treated with Benzonase nuclease (Novagene, Madison, WI) to digest nucleic acids. Two milligrams of protein were incubated with 4μg of anti-BRCA2 antibody (Oncogene Research Product, Boston, MA) for 1.5hrs. Protein A plus G beads were added for additional 2hrs. Beads were collected and washed ten times in lysis buffer. Then 2X SDS sample buffer was added and heated at 55°C for 10 minutes to elute the precipitated proteins. The eluted proteins were subjected to Western blot (see bellow).

To co-precipitate the endogenous BRCA2 with Myc-tagged proteins, BCCIPs, RAD51, RAD52, UBC9 were cloned into pMyc-CMV vector to tag them with the Myc epitope. Plasmids were transfected into HeLa cells using GenePorter transfection reagent (GeneTherapy Systems). Forty-eight hours after transfection, cells were collected, treated with lysis buffer, sonicated, and centrifuged for 10 minutes at 10,000 rpm. The supernatant (whole cell lysate) was treated with Benzonase and used for immunoprecipitation. Forty microliters of anti-Myc affinity bead (Clontech, Palo Alto, CA) was incubated with 1 mg of whole cell lysate at 4°C on a rocker for 20 minutes. The matrix was then washed ten times. Proteins retained on the beads were eluted with 2X SDS sample buffer by boiling for five minutes. The eluted proteins were subjected to Western blot (see bellow).
Eluted proteins from the CO-IP and other protein samples were resolved by 5% or 12% PAGE gel. Western blotting was performed using anti-Myc (Clontech, Palo Alto, CA), anti-BRCA2 (Oncogene Researcher Products, Boston, MA), anti-BCCIP (Liu et al., 2001), anti-HA (Clontech, Palo Alto, CA), and anti-actin (Sigma, St. Louis, MO) antibodies.

DNA content based cell cycle analysis

The method originally described by Vindelov et al was adapted to stain nuclear DNA for flowcytometry analysis (Vindelov et al., 1983). Briefly, cells were trypsinized, washed with PBS and fixed with 70% ethanol. Then cells were pelleted, washed with PBS and suspended in 200 μl of citrate buffer (250 mM Sucrose, 0.05% DMSO, 40 mM Trisodium citrate, ph7.6). Nine hundred microliters of Solution A [0.003% trispsin in stock buffer (3.4 mM Trisodium citrate, 0.1% Nonidet P 40, 1.5 mM Spermine tetrahydrochloride, 0.5 mM Trizma, pH 7.6)] were added and cells were incubated at room temperature for 10 minutes. Afterwards, 750 μl Solution B (0.025% Trypsin inhibitor, 0.01% Ribonuclease A in stock buffer) was added for another incubation of 30 minutes at room temperature. Then 750 μl of Solution C (0.0416% Propidium iodide, 3.3 mM Spermine tetrahydorchloride in stock buffer) was added to the cells and analyzed by flowcytometry. In each assay, 20,000 cells were collected by FACScan (Becton Dickinson) and analyzed by CellQuest software provided.

Acknowledgments

We thank Mark Brenneman (University of New Mexico) for critical reading of the manuscript. This research was supported by National Institute of Health NIEHS grant ES08353 and by the US
Army Medical Research and Materiel Command grant DAMD17-98-1-8198. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of these funding agencies.

References

Mol Cell Biol, 13, 5999-6011.
Table 1. BCCIP gene exon/intron junction sequences.

<table>
<thead>
<tr>
<th>Exon</th>
<th>3'-splice acceptor sequence</th>
<th>Location</th>
<th>Exon length (bp)</th>
<th>Location</th>
<th>5'-splice donor sequence</th>
<th>Intron size (BCCIP(\alpha)) (bp)</th>
<th>Intron size (BCCIP(\beta)) (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Promoter)GCAGGCAGCAGTG</td>
<td>7358</td>
<td>188</td>
<td>7546</td>
<td>GTATTGAGCGAGttgagaaggaca</td>
<td>2868</td>
<td>2868</td>
</tr>
<tr>
<td>2</td>
<td>ttgatattacagGAAATGTAATATT</td>
<td>10414</td>
<td>75</td>
<td>10489</td>
<td>TTACTGCACAGGgttagcttt</td>
<td>892</td>
<td>892</td>
</tr>
<tr>
<td>3</td>
<td>ttctcttttaagCTTTTCTAAAG</td>
<td>11381</td>
<td>81</td>
<td>11462</td>
<td>AGTGTGATTAAAGtaagtagata</td>
<td>2923</td>
<td>2923</td>
</tr>
<tr>
<td>4</td>
<td>tttttaaatagCAAAAGGATGTT</td>
<td>14385</td>
<td>90</td>
<td>14475</td>
<td>ACTGAAAGAAAGttggtttct</td>
<td>768</td>
<td>768</td>
</tr>
<tr>
<td>5</td>
<td>ttgcttttctagGGTACCCAGGT</td>
<td>15243</td>
<td>188</td>
<td>15431</td>
<td>CCAGCACCTTGAGtagagttct</td>
<td>2164</td>
<td>2164</td>
</tr>
<tr>
<td>6</td>
<td>ttgcttttctagGAAAGAACTGGC</td>
<td>17595</td>
<td>175</td>
<td>17770</td>
<td>TTATATGAGGtagagacttcc</td>
<td>7309</td>
<td>2157</td>
</tr>
<tr>
<td>7</td>
<td>ttgcttttctagAAGGCAATTCTC</td>
<td>19927</td>
<td>448</td>
<td>20375</td>
<td>ATTTAAAAATAAtataacagtgt (PolyA)</td>
<td>N/A</td>
<td>Poly A</td>
</tr>
<tr>
<td>8</td>
<td>ttgcttttctagGAGCAGGAAA</td>
<td>25078</td>
<td>76</td>
<td>25154</td>
<td>TACAGCACAATGttggtgttct</td>
<td>11795</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ttgcttttctagGTGGTCACGAGG</td>
<td>36949</td>
<td>456</td>
<td>37405</td>
<td>ATAAAGGCGCTAtaaaaaatcc (PolyA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor Type</td>
<td>No. of Cases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colon</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uterus</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectum</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostate</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovary</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cervix</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small intestine</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of cases</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure legends

Figure 1. Genomic organization at the BCCIP locus. A region of 70 kb of double stranded DNA at the BCCIP locus is illustrated in scale. There are at least three genes in this region. The boxes indicate the location of exons. The BCCIP gene contains 9 exons (top strand) that spans approximately 30 kb. On the opposite (bottom) strand of the DNA, the UROS gene and a DEAD/H helicase like gene (DDX32) are transcribed. Exons 2 and 3 of UROS are too close to each other and therefore represented by a single box. Similarly, exons 5 and 6 of the DDX32 gene are separated by a very small intron and therefore are also represented by a single box. The UROS and BCCIP gene are separated by a 277 bp intergenic region. Additionally, the 3-terminal exons of BCCIP and the DDX32 gene overlap with each other.

Figure 2. 3'-terminal alternative splicing produces two forms of BCCIP mRNA transcripts. The BCCIPα isoform (top panel) results from the splicing of exons 1, 2, 3, 4, 5, 6, 8, and 9. The BCCIPβ isoform (bottom panel) results from the splicing of exons 1, 2, 3, 4, 5, 6, and 7. The polyA addition signals of the α and β transcripts are coded in exons 9 and 7 respectively. The amino acid residues coded by each exon are indicated in the top and bottom panels. Amino acid 200 is coded by the junction between exons 5 and 6, and amino acid 283 of the α isoform is coded by the junction between exons 8 and 9.

Figure 3. BCCIP promoter analysis. Panel A illustrates the expression cassette of a CAT reporter (pTK-CAT) driven by a TK promoter. The TK promoter can be replaced by various promoter sequences (Panel C) to generate a panel of new CAT reporter plasmids. Panel B is the
expression cassette of the reference plasmid (pCH110) that expresses the β-gal gene from the SV40 promoter, which serves as an internal control for transfection. Panel C illustrates eight promoter segments and their orientations that were used to replace the TK promoter in pTK-CAT to generate a panel of new CAT reporter plasmids. Panel D illustrates the promoter activity of the segments in Panel C. The transcription activity is normalized to the reference β-gal activity expressed from pCH110, which was co-transfected with the CAT reporters. A CAT reporter without any promoter (Shown as “none”) was used as negative control, and the TK promoter was used as positive control. Shown are the averages of 4 experiments. The error bars indicate standard errors of the means.

Figure 4. Potential binding sites for transcription factors in the BCCIP promoter. The promoter sequence is illustrated in the BCCIP orientation. The putative binding sites for the transcription factors are underlined. Three sites bordering the promoter segment used in Figure 3C are also indicated.

Figure 5. BCCIP expression in various human tissues. Northern blot of a multiple tissue mRNA membrane. Panel A indicates the BCCIP mRNA levels, and panel B indicates the β-actin levels in these tissues.

Figure 6. BCCIP expression in tumor tissues. Shown are the BCCIPα (panel A) and BCCIPβ (panel B) mRNA levels in tumor and matched normal tissues. The cancer types are labeled on the top of panel A. Relative expression level was normalized to ubiquitin mRNA, and grouped
according to tissue type. One case of kidney and one case of breast cancer have BCCIPβ signals below the background, therefore the values of these two cases were not plotted in panel B.

Figure 7. Interactions between BRCA2 and BCCIP.

A. Co-IP of endogenous BCCIPα and BCCIPβ with endogenous BRCA2. The endogenous BRCA2 proteins were immunoprecipitated with mouse anti-BRCA2 antibodies (lane 4). A non-specific mouse IgG and beads without antibody were used as negative controls (lanes 3 and 2). The whole cell extract (lanes 1) and precipitated proteins (Lanes 2-4) were blotted with anti-BRCA2 antibodies (top panel) and rabbit anti-BCCIP antibodies (bottom panel).

B. Co-IP of endogenous BRCA2 with myc-tagged BCCIPα and BCCIPβ. Myc-tagged proteins (indicated on the top of the figure) were expressed in HeLa cells, and precipitated with anti-Myc antibodies. The precipitated Myc-tagged proteins are shown in the top panel. The co-precipitated endogenous BRCA2 protein (bottom panel) were detected by anti-BRCA2 antibodies. For more details, see text.

Figure 8. Expressions of BCCIP inhibit growth of HeLa and HT1080 cells.

A. Inhibition of cell growth by BCCIPα and BCCIPβ. Half million of HeLa and HT1080 cells were transfected with 10 μg of vectors expressing HA-BCCIPα (column 2) or HA-BCCIPβ (column 3). Stably transfected cells were selected by antibiotics, and stained by crystal violet after two weeks. An empty vector (column 1) was used as control. This figure shows that although equal amount of vector was used, no stable cells expressing BCCIPβ can be obtained, and less cells expressing BCCIPα were obtained in comparison with empty vector control.
B. Expression of BCCIPα and BCCIPβ in HeLa and HT1080 cells shortly after the transfection.

Forty eight hours after the transfection, equal amount of proteins from a set of the same transfection as described in panel A was analyzed for HA-BCCIPα and HA-BCCIPβ expression by anti-HA antibody (top Panel). Anti-actin antibody (bottom panel) was used to illustrate that approximately equal amount of total proteins was loaded to each of the samples.

Figure 9. Induced-BCCIPβ overexpression inhibits the growth of HT1080 cells.

A. Doc-inducible BCCIPβ expression in HT1080 cells. HA-tagged BCCIPβ were cloned into pREV-TRE (Clontech), which was introduced via retroviral infections into HT1080 cells that had been previously transfected with pTet-On vector, resulting in a doxycycline (Doc)-inducible HA-BCCIPβ expressing cell line, designated HT1080/TetOn-BCCIPβ. Shown in top panel is the exogenously expressed HA-BCCIPβ levels detected by anti-HA antibodies. The same blot was re-blotted with anti-actin (bottom panel) to show that equal amounts of proteins were loaded for each of the samples. As shown, HA-BCCIPβ was significantly induced by Doc in this cell line (lane 3) as compared to non-induced condition (lane 2). The control cell line (lane 1) is the wild type HT1080 cells treated with Doc.

B. Induced BCCIPβ expression inhibits cell growth. Shown are the growth curves of a wild type HT1080 cells (triangle), HT1080/TetOn-BCCIPβ cells with non-induced BCCIPβ (square) expression, and HT1080/TetOn-BCCIPβ cells with induced BCCIPβ expression (circle).

Figure 10. Induced-BCCIPβ overexpression delays G1-S transition. HT1080/TetOn-BCCIPβ cells as in Figure 9 were treated with Doc for 3 day to induce BCCIPβ overexpression (column 3). Control groups are wild type HT1080 treated with Doc (column 1) and mock-treated
HT1080/TetOn-BCCIPβ (column 2). Then, 10μg/ml of nocodazole (Noc) was added to the cells. Various times after continuous Noc treatment (labeled on the left), cells were collected for DNA content analysis using flowcytometry. The gradual disappearance of the G1-peak represents the transition of G1-phase cells into S-phase.
Meng, et al. Figure 2.
Meng, et al. Figure 3.
Meng, et al. Figure 4.

YY1
GCAATGCACA**CCGCCAT**CAGGGCCAAGGATGAGGTGACAGGGTGACAGGTTGGAACCACT 60
CGTACGCGTGGGTGTAAGGCTGGTCCCTCTCTCCCAGTCTACCCCAACCTTTGTA

(80bp)

AP2/SP1 ↓ SP1 Enhancer Core
ACGGAAAGGGAGGGGAAGCCGAGGAGGTGATGAGGGGTGGAAAGCGGAAAGAAA 120
TGCCCTCTCCCTCTCTCCCTCAGAACCCTCCTACTACCTCCACCTTTCCCTTTT

(139bp)

PEA2 ↓ AP-1
GCAAGATGGA**ACC GCCA**AGCTGGACAGCTGTAAGGGGTCAATGGCTGCGGAAATCCAGCAG 180
CGTCTACCCCTGGGCTGACACTGCACTGACATTTCCAGTACCGACCGCTTAGTTGTC

(207bp)

↓
GGGCAATGGGTTGCATGCAGCTCAGGCGCGAGTTTTCTGAGTTCCCACCCAGTTGG 240
CCCGTAAACCAACTGCACTGAGTGGCCTCCGACTCAAGAAGCATCAAGGAGTTGGGGAACC

CTACTATGGGCTGTCGCGGAGGGAGGCAAGGGGAA 277
GATGATACCGCGCCGCCCTCCGAGTCCGTTCCCTT
Meng, et al. Figure 6.
Meng, et al. Figure 7.
Meng et al. Figure 8.
Meng et al. Figure 9.

A

1. Wild type (HT1080)
2. Non-induced
3. Induced

- HA-BCCIPβ
- Inducible cell line (HT1080/TetOn-BCCIPβ)
- Actin (loading control)

B

Number of Cells (x1E06)

- Wild type cell
- BCCIPβ (non-induced)
- BCCIPβ (induced)

Days of Growth

0 1 2 3 4 5
Meng et al. Figure 10.

<table>
<thead>
<tr>
<th>Time of Noc exposure</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 hr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 hrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 hrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 hrs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **1**: HT1080 (control)
- **2**: BCCIPβ (non-induced)
- **3**: BCCIPβ (induced)
MEMORANDUM FOR Administrator, Defense Technical Information Center (DTIC-OCA), 8725 John J. Kingman Road, Fort Belvoir, VA 22060-6218

SUBJECT: Request Change in Distribution Statement

1. The U.S. Army Medical Research and Materiel Command has reexamined the need for the limitation assigned to technical reports written for this Command. Request the limited distribution statement for the enclosed accession numbers be changed to "Approved for public release; distribution unlimited." These reports should be released to the National Technical Information Service.

2. Point of contact for this request is Ms. Kristin Morrow at DSN 343-7327 or by e-mail at Kristin.Morrow@det.amedd.army.mil.

FOR THE COMMANDER:

Encl

PHYLIS M. RINEHART
Deputy Chief of Staff for Information Management