AD NUMBER

ADB282191

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies only; Proprietary Info.; Aug 2001. Other requests shall be referred to US Army Medical Research and Materiel Comd., 504 Scott St., Fort Detrick, MD 21702-5012.

AUTHORITY

USAMRMC ltr, dtd 28 July 2003
Award Number: DAMD17-99-1-9150

TITLE: Understanding Single-Stranded Telomere End Binding by an Essential Protein

PRINCIPAL INVESTIGATOR: Emily Anderson
Dr. Deborah Wuttke

CONTRACTING ORGANIZATION: University of Colorado
Boulder, Colorado 80309

REPORT DATE: August 2001

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Distribution authorized to U.S. Government agencies only (proprietary information, Aug 01). Other requests for this document shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702-5012.

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE U.S. GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

LIMITED RIGHTS LEGEND

Award Number: DAMD17-99-1-9150
Organization: University of Colorado

Those portions of the technical data contained in this report marked as limited rights data shall not, without the written permission of the above contractor, be (a) released or disclosed outside the government, (b) used by the Government for manufacture or, in the case of computer software documentation, for preparing the same or similar computer software, or (c) used by a party other than the Government, except that the Government may release or disclose technical data to persons outside the Government, or permit the use of technical data by such persons, if (i) such release, disclosure, or use is necessary for emergency repair or overhaul or (ii) is a release or disclosure of technical data (other than detailed manufacturing or process data) to, or use of such data by, a foreign government that is in the interest of the Government and is required for evaluational or informational purposes, provided in either case that such release, disclosure or use is made subject to a prohibition that the person to whom the data is released or disclosed may not further use, release or disclose such data, and the contractor or subcontractor or subcontractor asserting the restriction is notified of such release, disclosure or use. This legend, together with the indications of the portions of this data which are subject to such limitations, shall be included on any reproduction hereof which includes any part of the portions subject to such limitations.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

[Signature]

[Signature]
Title and Subtitle
Understanding Single-Stranded Telomere End Binding by an Essential Protein

Funding Numbers
DAMD17-99-1-9150

Abstract
Telomeres are the nucleoprotein structures that cap the ends of eukaryotic chromosomes. Telomere length is controlled by the enzyme telomerase and a suite of telomere binding proteins. Anomalous telomeric replication and regulation are implicated in most forms of cancer, while telomeric shortening contributes to cellular aging. Cdc13p is an essential protein from *S. cerevisiae* that binds to the single-stranded ends of telomeres with high specificity and affinity. Genetically, Cdc13p has been shown to protect the end of the chromosome from degradation and to load telomerase in concert with the protein Est1p. Biochemically, Cdc13p binds yeast single-stranded telomeric DNA (stelo DNA) in vitro with high affinity (K_d=0.3 nM). The DNA-binding domain of the protein has been mapped previously.

We are investigating the structural and biochemical basis for high affinity binding and sequence specificity of this domain. A high resolution solution structure of the protein/DNA complex is in progress. Here we use NMR experiments to determine the single-stranded DNA conformation in the complex and directly observe protein/DNA NOE contacts. In a complementary approach, we have performed *in vitro* protein/DNA photocrosslinking experiments using the chromophore 5-iodouracil. Proteolytic digestion and peptide micro-sequencing have allowed identification of sites in the protein involved in binding ssDNA.

Keywords
Breast cancer, telomeres, telomerase, single-stranded DNA binding protein, Cdc13, nuclear magnetic resonance (NMR), structural biology, biophysical chemistry, structure-function relationships, *Saccharomyces cerevisiae*.
Annual Report for: Understanding Single-Stranded Telomere End Binding by an Essential Protein

Emily M. Anderson
Department of Chemistry and Biochemistry
University of Colorado at Boulder

TABLE OF CONTENTS

Front Cover..
SF 298...2
Table of Contents..3
Introduction..4
Body...4-7
Key Research Accomplishments...8
Reportable Outcomes...8
Appendices (Meeting Abstracts)..9-10

UNPUBLISHED DATA 3
INTRODUCTION

Telomeres are the nucleoprotein complexes that protect the ends of linear eukaryotic chromosomes. Telomere replication and length regulation are controlled by the enzyme telomerase and a suite of telomere binding proteins. Anomalous telomeric replication is implicated in most forms of human cancer. Telomere metabolism is thus an active field in basic research for the eventual goal of developing inhibitors or modulators of telomere replication for cancer therapy. Cdc13p is an essential protein from the budding yeast *Saccharomyces cerevisiae* whose role is to protect the end of the chromosome from degradation and to load telomerase in concert with the protein Est1p. Biochemically, Cdc13p binds to single-stranded yeast telomeric DNA with high affinity and specificity. We are investigating the structural basis for high affinity binding and sequence specificity of the DNA binding domain. One aspect of this research involves solving the high resolution solution structure of the domain complexed to DNA using heteronuclear, multidimensional NMR. Biochemical techniques are also being employed, including mapping regions of the domain in proximity to the DNA by photocrosslinking and investigating sequence specificity using libraries of DNA with varying sequences. The advantage of studying this protein using yeast as a model organism is the power of combining structure, biochemistry, and genetics all in one system.

BODY

Significant progress toward accomplishment of the technical goals has been made in the last year. Technical objective 1, outlined below, was completed in full as of the report submitted one year ago.

Technical Objective 1:
- **Express and purify DNA binding constructs** 2 Months
- **Conduct binding assays with site-randomized DNA** 4 Months
- **Conduct CD experiments of protein folding and DNA binding** 1 Month

An optimized DNA-binding domain construct has been delineated using proteolysis and MALDI mass spectrometry. This construct has been subcloned, expressed and purified in high yield, suitable for high resolution structural characterization. The construct binds DNA with affinity comparable to that reported for the full-length protein as measured by both gel-shift binding assays and nitrocellulose filter-binding assays. Binding assays were conducted with site-randomized single-stranded DNA oligomers to determine bases in the DNA critical for binding affinity and specificity. These experiments are to be followed up by experiments involving chemical modification of the DNA with dimethyl sulfate. Circular Dichroism experiments were performed to assess the secondary structural content of the domain, whether there are gross structural changes upon DNA binding, and to assess the thermostability of the domain in isolation. It was found that the domain in isolation forms a compact, stable, globular structure with both α helical and β sheet structure content. No major secondary structural changes occurred upon DNA binding.

UNPUBLISHED DATA
Technical objective 2 is also essentially complete, as outlined below.

Technical objective 2:

Conduct photocrosslinking/identify contacts 3 Months
Design mutants/test *in vitro* and *in vivo* 6 Months

Photocrosslinking experiments with the chromophore iodouracil substituted for thymine have been performed. The DNA substrates used are outlined in Figure 1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA1</td>
<td>dG(^1)UGTGGGTGTG</td>
</tr>
<tr>
<td>DNA2</td>
<td>dGTG(^1)UGGGTGTG</td>
</tr>
<tr>
<td>DNA3</td>
<td>dGTGTGGG(^1)UGTG</td>
</tr>
<tr>
<td>DNA4</td>
<td>dGTGTGGGTG(^1)UG</td>
</tr>
</tbody>
</table>

Figure 1. Sequences of the four modified single-stranded DNA oligomers used in the photocrosslinking study. \(^1\)U represents the chromophore iodouracil.

The peptide in the domain which crosslinks to DNAs 2, 3, and 4 has been identified using trypsin digestion and micro-Edman sequencing. The sequence of the entire domain is given in Figure 2, along with the crosslinked peptide in bold. Trypsin skips one possible cut site between lysine26 and tyrosine27 when the domain is covalently bound to DNA. Edman sequencing did not identify the precise amino acid in the peptide bound to DNA, as N-terminal sequencing is only possible for the first 20-25 amino acids of this 46 amino acid peptide. In two cases, threonine 25 and threonine 29 were recorded as "blanks" in the sequence implicating them as sites of crosslinking. However, due to the size of the peptide, complete sequences could not assign them as the crosslinking sites with complete confidence. Mass spectrometry was also not successful in identifying the amino acid involved in the crosslink. However, this peptide is completely in agreement with the region of the protein involved in DNA binding as revealed by structural studies (see technical objective 3). As specific amino acids were not identified using this technique, mutagenesis to analyze the DNA-binding interface is being designed in conjunction with the data collected in technical objective 3.

Figure 2. Primary sequence of the Cdc13p ssDNA binding domain with the crosslinked tryptic peptide in bold.

UNPUBLISHED DATA
Technical objective 3 involves determining the high resolution NMR solution structure of the domain. This objective is also well on its way to completion. As stated in last year’s annual progress report, the focus of the research until now has been on the protein/DNA complex with the collaboration of another student in the laboratory, Rachel Mitton-Fry. The original Technical Objective 3 is listed as follows:

Technical Objective 3:

Optimize solution conditions of sample for NMR spectroscopy 1 Month

Protein alone –

- Collect heteronuclear NMR data for resonance assignment 6 Months
- Assign resonances in the protein domain 6 Months
- Collect heteronuclear NMR data for distance restraints 1 Month
- Determine family of structures that satisfy restraints 6-12 Months

Protein/DNA complex –

- Titrate DNA into protein and conduct NMR experiments 6-18 Months

Solution conditions were optimized and many of the heteronuclear NMR experiments were conducted on the complex before submission of last year’s annual report. Resonance assignments were also well on their way to completion. A 15N-labeled sample of protein was prepared and used to titrate with DNA; the complex is in slow-exchange on the NMR time scale. This data is presented in Figure 3.

![Figure 3. A selected region of 15N HSQC spectra of Cdc13p DNA binding domain with increasing amounts of dGTGTGGGTGTG added.](image)

Titration of DNA with Cdc13p DBD Reveals Slow-Exchange Binding

Free Cdc13 + 1/2 equiv. DNA + 1 equiv. DNA

1H ppm

Regions of 1N HSQC spectra obtained at 25°C and 600MHz.
This year, protein resonance assignments of the protein/DNA complex have been essentially completed by Rachel Mitton-Fry. Preliminary structures of complex have been generated and are being refined with the addition of remaining NOE restraints and dihedral angle restraints from 3-bond scalar coupling measurements. The domain has a mixed α/β topology and contains a β-barrel type fold.

In our preparations of the complex the DNA is unlabeled and is not observed in the isotope-selected experiments conducted so far. This year I have performed isotope-filtered NMR experiments to examine the unlabeled single-stranded DNA in the complex and it appears to be in an extended conformation. The DNA exists in a unique conformation with 11 identifiable spin systems. To aid in assignment of the spin systems I will conduct experiments with various thymine bases substituted with uracil. Site-specific 13C-labeled samples may also be prepared. Also I have conducted isotope select-filter experiments to measure NOE contacts between the protein and DNA. From this data we have mapped a DNA-binding interface or cleft on the preliminary protein structure which is consistent with other measurements on the complex such as: chemical shift changes that occur upon binding, protection from hydrogen exchange, and mapping of a net positively-charged groove on the surface of the protein. Currently mutations are being chosen to test the thermodynamic contributions of these interface residues to binding.

We have discovered that a construct of the domain with a C-terminal 6-Histidine tag is significantly more soluble in the absence of DNA than the construct lacking the His-tag (whose solution lifetime was about 12 hours under the best circumstances). This finding will allow the structure of the free protein to be determined which would not have been possible before. A 15N-labeled NMR sample of this His-tagged construct was prepared without DNA and lasted several weeks in solution, which is long enough to make preparation of 15N, 13C-labeled samples feasible and conduct the triple-resonance experiments required for structural study.

It should be noted that some of the subtasks in technical objective 3 are being completed in parallel by myself, while some are being completed by Rachel Mitton-Fry. In this respect completion of the entire project, which has a total time frame of 5 years, should be completed well within the scope of the granting period, which lasts another year for a total of 3 years of funding.
KEY RESEARCH ACCOMPLISHMENTS (THIS YEAR)

- A specific peptide in the N-terminal region of the domain was identified as photocrosslinking to several iodouracil-modified DNAs. This peptide localizes to the protein/DNA interface as calculated by structural methods.

- Titration of the protein with DNA has revealed that the complex is in slow exchange on the NMR timescale.

- Assignment of protein NOE crosspeaks in the complex (distance restraints) is nearly complete.

- Preliminary structures of the protein in the complex have been calculated.

- Double-filtered isotope experiments have revealed that the bound DNA is in an extended conformation.

- Select-filter isotope NOE experiments have delineated a set of residues that contact DNA which form a DNA-binding interface on the surface of the protein.

- Mutations have been designed to measure the thermodynamic effect of residues at the DNA-binding interface.

- A 6-His tagged version of the protein domain was found to be significantly more soluble than without the tag, allowing structural studies of the domain in the absence of DNA.

REPORTABLE OUTCOMES

Abstracts: The work in progress has been presented as a poster at two meetings: Telomeres and Telomerase (Cold Spring Harbor, NY), and the 15th Symposium of the Protein Society (Student Poster Award – Philadelphia, PA).

Presentations: This work has been presented as a talk at the University of Colorado Biophysical Club in May, 2001.
STRUCTURAL AND BIOCHEMICAL INVESTIGATION OF SINGLE-STRAINED TELOMERIC DNA BINDING BY CDC13P

E.M. Anderson1, R.M. Mitton-Fry1, T.R. Hughes2, V. Lundblad3, D.S. Wuttke4

1Dept. of Chemistry and Biochemistry, U. of Colorado, Boulder, CO 80309
2Dept. of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030

Cdc13p is an essential protein from S. cerevisiae that binds to the single-stranded ends of telomeres with high specificity and affinity. Genetically, Cdc13p has been shown to protect the end of the chromosome from degradation and to load telomerase in concert with the protein Est1p.1,2 Biochemically, Cdc13p binds yeast single-stranded telomeric DNA (sstel DNA) in vitro with high affinity (Kd=0.3 nM). The DNA-binding domain of the protein has been mapped by deletion analysis and proteolysis.3

We are investigating the structural and biochemical basis for high affinity binding and sequence specificity of the single-stranded DNA binding domain. A high resolution solution structure of the complex is in progress in our laboratory. Heteronuclear, multidimensional NMR and 15N and 13C isotopic labeling of the protein domain have allowed us to make complete resonance assignments of the protein (see poster presented by RMF). Here we report the use of filtered and selected/filtered NOE experiments to determine the single-stranded DNA conformation in the complex and directly observe protein-DNA NOE contacts. We have also performed in vitro protein/DNA photocrosslinking experiments using the chromophore 3-iodouracil substituted for thymine in the DNA. Proteolytic digestion of the crosslinked products along with peptide microsequencing and ESI mass spectrometry allowed identification of sites in the protein involved in sstelo DNA binding.

We gratefully acknowledge funding from: the NIH, the American Cancer Society, a CU Junior Faculty Development Award, a HHMI Predoctoral Fellowship (RMF), and the US Army Breast Cancer Research Program (EMA).
Telomeres are the nucleoprotein structures that cap the ends of eukaryotic chromosomes. Telomere length is controlled by the enzyme telomerase and a suite of telomere binding proteins. Anomalous telomeric replication and regulation are implicated in most forms of cancer, while telomeric shortening contributes to cellular aging. Cdc13p is an essential protein from *S. cerevisiae* that binds to the single-stranded ends of telomeres with high specificity and affinity. Genetically, Cdc13p has been shown to protect the end of the chromosome from degradation and to load telomerase in concert with the protein Est1p. Biochemically, Cdc13p binds yeast single-stranded telomeric DNA (sstelo DNA) in vitro with high affinity ($K_d=0.3$ nM). The DNA-binding domain of the protein has been mapped by deletion analysis and proteolysis.

We are investigating the structural and biochemical basis for high affinity binding and sequence specificity of the single-stranded DNA binding domain. A high resolution solution structure of the protein/DNA complex is in progress in our laboratory. Here we report the use of NMR experiments designed to determine the single-stranded DNA conformation in the complex and directly observe protein/DNA NOE contacts. In a complementary approach, we have performed in vitro protein/DNA photocrosslinking experiments using the chromophore 3-iodouracil. Proteolytic digestion along with peptide micro-sequencing and ESI mass spectrometry allowed identification of sites in the protein involved in sstelo DNA binding.

We thank the NIH, the American Cancer Society, a CU Junior Faculty Development Award, a HHMI Predoctoral Fellowship (RMF), and the US Army Breast Cancer Research Program (EMD) for funding.

Kinetics of yTBP binding with Biotinylated TATA DNA by Biacore Analysis

Lucille A Schneeweis, Michael R Brigham-Burke, and B Franklin Pugh

GlaxoSmithKline Pharmaceuticals, 709 Swedeland Road, U6447A, King of Prussia, PA 19406.

The TATA-binding protein (TBP) recognizes the TATA box sequence of the promoter region of eukaryotic genes. This interaction is critical for the recruitment and assembly of the eukaryotic transcription initiation complex. The recruitment of TBP at a promoter is thought to be rate-limiting in transcription of RNA polymerase II-transcribed genes, and thus an important regulatory point. The mechanism of TBP binding to the TATA-box recognition site on DNA is important for understanding eukaryotic transcription regulation. This interaction has been studied by Biacore surface plasmon resonance analysis through the capture of biotinylated TATA-containing DNA on the sensor surface and solution binding of yTBP.
MEMORANDUM FOR Administrator, Defense Technical Information Center (DTIC-OCA), 8725 John J. Kingman Road, Fort Belvoir, VA 22060-6218

SUBJECT: Request Change in Distribution Statement

1. The U.S. Army Medical Research and Materiel Command has reexamined the need for the limitation assigned to technical reports written for this Command. Request the limited distribution statement for the enclosed accession numbers be changed to "Approved for public release; distribution unlimited." These reports should be released to the National Technical Information Service.

2. Point of contact for this request is Ms. Kristin Morrow at DSN 343-7327 or by e-mail at Kristin.Morrow@det.amedd.army.mil.

FOR THE COMMANDER:

Encl

PHYLIS M. RINEHART
Deputy Chief of Staff for
Information Management
ADB233865 ADB264750
ADB265530 ADB282776
ADB244706 ADB286264
ADB285843 ADB260563
ADB240902 ADB277918
ADB264038 ADB286365
ADB285885 ADB275327
ADB274458 ADB286736
ADB285735 ADB286137
ADB286597 ADB286146
ADB285707 ADB286100
ADB274521 ADB286266
ADB259955 ADB286308
ADB274793 ADB285832
ADB285914
ADB260288
ADB254419
ADB282347
ADB286860
ADB262052
ADB286348
ADB264839
ADB275123
ADB286590
ADB264002
ADB281670
ADB281622
ADB282191
ADB283518
ADB285797
ADB269339
ADB264584
ADB282777
ADB286185
ADB262261
ADB282896
ADB286247
ADB286127
ADB274629
ADB284370
ADB264652
ADB281790
ADB286578