<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD NUMBER</td>
</tr>
<tr>
<td>ADB275851</td>
</tr>
<tr>
<td>NEW LIMITATION CHANGE</td>
</tr>
<tr>
<td>TO</td>
</tr>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
<tr>
<td>FROM</td>
</tr>
<tr>
<td>Distribution authorized to U.S. Gov't. agencies only; Proprietary Info.; Oct 2001. Other requests shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott St., Ft. Detrick, MD 21702-5012.</td>
</tr>
<tr>
<td>AUTHORITY</td>
</tr>
<tr>
<td>USAMRMC ltr, 28 Aug 2002</td>
</tr>
</tbody>
</table>

THIS PAGE IS UNCLASSIFIED
Award Number: DAMD17-00-1-0684

TITLE: Role of Sulfation Pharmacogenetics in Breast Cancer Treatment with 2-Methoxyestradiol

PRINCIPAL INVESTIGATOR: Araba A. Adjei, Ph.D.

CONTRACTING ORGANIZATION: Mayo Clinic Foundation
Rochester, Minnesota 55905

REPORT DATE: October 2001

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Distribution authorized to U.S. Government agencies only (proprietary information, Oct 01). Other requests for this document shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702-5012.

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE U.S. GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

LIMITED RIGHTS LEGEND

Award Number: DAMD17-00-1-0684
Organization: Mayo Clinic Rochester

Those portions of the technical data contained in this report marked as limited rights data shall not, without the written permission of the above contractor, be (a) released or disclosed outside the government, (b) used by the Government for manufacture or, in the case of computer software documentation, for preparing the same or similar computer software, or (c) used by a party other than the Government, except that the Government may release or disclose technical data to persons outside the Government, or permit the use of technical data by such persons, if (i) such release, disclosure, or use is necessary for emergency repair or overhaul or (ii) is a release or disclosure of technical data (other than detailed manufacturing or process data) to, or use of such data by, a foreign government that is in the interest of the Government and is required for evaluational or informational purposes, provided in either case that such release, disclosure or use is made subject to a prohibition that the person to whom the data is released or disclosed may not further use, release or disclose such data, and the contractor or subcontractor or subcontractor asserting the restriction is notified of such release, disclosure or use. This legend, together with the indications of the portions of this data which are subject to such limitations, shall be included on any reproduction hereof which includes any part of the portions subject to such limitations.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

[Signature]

[Date: 01/01/02]
Role of Sulfation Pharmacogenetics in Breast Cancer Treatment with 2-Methoxyestradiol

2-ME₂ is an endogenous estrogen metabolite that inhibits the proliferation of breast and other human cancer cell lines. 2-ME₂ also has potent anti-angiogenic and anti-tubulin properties, and it may inhibit estrogen-induced carcinogenesis in the mammary gland. We set out to test the hypothesis that 2-ME₂ might be a substrate for sulfate conjugation and, therefore, that individual variations in the sulfation of 2-ME₂ might contribute to individual differences in its metabolism, pharmacokinetics and therapeutic efficacy. As a first step, we tested 2-ME₂ as a substrate for 7 human sulfotransferase (SULT) isoforms -- as well as all of the common allozymes for SULT1Al and 1A2. Substrate kinetic studies were conducted in two stages -- starting with concentrations over 5 orders of magnitude, followed by determination of K_m values over a narrow concentration range. 2-ME₂ was a sulfate acceptor substrate for SULT1A1*1, *2, *3; 1A2*1, *2, *3; 1A3; 1E1; 2A1; 2B1a and 2B1b, with apparent K_m values of 2.5, 5.2, 1.6; 4.2, 111, 5.3; 91; 0.067; 8.3; 4.1 and 4.1 μM, respectively. These results suggest that individual pharmacogenetic variation in sulfate conjugation might contribute to individual differences in 2-ME, pharmacokinetics and therapeutic effect.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT COVER</td>
<td></td>
</tr>
<tr>
<td>STANDARD FORM (SF) 298, REPORT DOCUMENTATION PAGE</td>
<td>2</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>3</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>BODY</td>
<td>4</td>
</tr>
<tr>
<td>KEY RESEARCH ACCOMPLISHMENTS</td>
<td>5</td>
</tr>
<tr>
<td>REPORTABLE OUTCOMES</td>
<td>5</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>5</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>6</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>8</td>
</tr>
</tbody>
</table>
INTRODUCTION

The risk of estrogen-induced breast cancer is affected by the balance between activities of several enzymes involved in the biotransformation of estrogen and its metabolites. 2-methoxyestradiol (2-ME), an endogenous estrogen metabolite that inhibits the proliferation of many human cell lines in vitro and in vivo, is being developed for clinical testing as an anticancer agent. 2-ME has unique biological properties not shared with the other estrogen metabolites. It has potent anti-angiogenic activity in vitro and in vivo as well as antitubulin properties. While the exact mechanism of antiproliferative activity of 2-ME is unknown, emerging evidence suggests that 2-ME may inhibit estrogen-induced carcinogenesis in target tissues such as the mammary gland. Conjugation of 2-ME, catalyzed by sulfotransferase (SULT) enzymes may alter its anti-tumorigenic effects in the treatment of breast cancer. Many human SULTs are genetically polymorphic therefore, individual variations in SULT enzyme activity imply variations in the inactivation of 2-ME, with subsequent variations in antitumorigenic activity. We therefore hypothesized that SULT enzyme activities may play an active and important role in the response of breast cancer patients to treatment with 2-ME, through changes in catabolism. Hence, sulfation, may play a role in the therapeutic response of individuals to the treatment of breast cancer with 2-ME.

BODY

The main task was to characterize the SULT enzymes involved in the catabolism of 2-ME. This task was completed.

To initiate this work, cDNAs for human SULT1A1*1, SULT1A1*2, SULT1A1*3; SULT1A2*1, SULT1A2*2, SULT1A2*3; SULT1A3; SULT1B1; SULT1C1; SULT1E1, SULT2A1; SULT2B1a; SULT2B1b and SULT4A1 were each ligated into either the eukaryotic expression vector pCR3.1 or p91023B. Sequences of the cDNA inserts were confirmed by DNA sequencing prior to transfection of COS-1 cells using the DEAE-dextran or the Transfast method. Cytosol from transfected COS-1 cells served as a source of recombinant protein. The resulting recombinant SULT proteins were used for the biochemical characterization of 2-ME. Substrate kinetic studies for the sulfation of 2-ME was performed using the modified assay method of Foldes and Meek for sulfotransferases. Because of profound substrate inhibition displayed by SULTs, two sets of experiments were performed for each enzyme. The Km and Vmax values were then calculated using the method by Cleland. See appendix.

The long term goal of this project would be to identify the existence of functionally significant polymorphism(s) in the SULT isoform(s) responsible for catabolism of 2-ME in the target tissue. Genotyping of patients prior to treatment with 2-ME would be expected to predict response and/or toxicity, and allow for the tailoring of drug doses to individual patients.

In the appendix are:

Figure 1: Scheme showing the sulfate conjugation of 2-ME.
Figure 2: Substrate curves and double inverse plot for 2-ME catalyzed by SULT1E1.
Table 1: Substrate Kinetic results obtained from this study.

4

PROPRIETARY DATA
KEY RESEARCH ACCOMPLISHMENTS

The proposed task/work indicated in the concept was completed. A poster with this work was presented at the 102nd Annual meeting of the American Society for Clinical Pharmacology and Therapeutics (ASCPT), in March 2001, at Orlando, FL.

REPORTABLE OUTCOMES

CONCLUSIONS

- 2-ME₂ is an endogenous estrogen metabolite formed in vivo by the O-methylation of 2-hydroxyestradiol, a reaction catalyzed by COMT.
- 2-ME₂ is being tested as an antineoplastic agent because of its anti-proliferative, anti-angiogenic and anti-tubulin properties.
- Sulfate conjugation is one potential metabolic pathway for 2-ME₂.
- We found that seven of the ten known human SULT isoforms can catalyze the sulfation of 2-ME₂.
- Of the isoforms studied, SULT1E1 had the lowest apparent Kₘ value for 2-ME₂.
- The common allozymes for SULT1A1 also catalyzed the sulfation of 2-ME₂. Therefore, if this isoform contributes significantly to 2-ME₂ biotransformation in vivo, genetic variation in SULT1A1 might contribute to individual differences in 2-ME₂ metabolism, pharmacokinetics and therapeutic efficacy.
- The next step in these studies will require a determination of the relative importance of sulfate conjugation in the metabolism of 2-ME₂ when this agent is administered in a clinical setting.

"SO WHAT"

As a result of these studies, we have evidence that SULTs metabolize the anti-tumorigenic drug, 2-ME2. Since many of the human SULTs are genetically polymorphic, genotyping patients prior to treatment, perhaps, may predict response and/or toxicity and allow for tailoring of drug doses to individual patients.
REFERENCES

APPENDICES

Appendix I:

2-ME is an endogenous estrogen metabolite that inhibits the proliferation of breast and other human cancer cell lines. 2-ME also has potent anti-angiogenic and anti-tubulin properties, and it may inhibit estrogen-induced carcinogenesis in the mammary gland. We set out to test the hypothesis that 2-ME might be a substrate for sulfate conjugation and, therefore, that individual variations in the sulfation of 2-ME might contribute to individual differences in its metabolism, pharmacokinetics and therapeutic efficacy. As a first step, we tested 2-ME as a substrate for 7 human sulfotransferase (SULT) isoforms -- as well as all of the common allozymes for SULT1A1 and 1A2. Substrate kinetic studies were conducted in two stages -- starting with concentrations over 5 orders of magnitude, followed by determination of Km values over a narrow concentration range. 2-ME was a sulfate acceptor substrate for SULT1A1*1, *2, *3; 1A2*1, *2, *3; 1A3; 1E1; 2A1; 2B1a and 2B1b, with apparent Km values of 2.5, 5.2, 1.6; 4.2, 111, 5.3; 91; 0.067; 8.3; 4.1 and 4.1 μM, respectively. These results suggest that individual pharmacogenetic variation in sulfate conjugation might contribute to individual differences in 2-ME pharmacokinetics and therapeutic effect.

[Supported by DAMD Grant DAMD17-00-1-0684]

Appendix II: See attached Figures and Table on pages 9-11.

N.B. FIGURES AND TABLE IN APPENDIX II ARE PROPRIETARY DATA.
SULT Catalyzed 2-Methoxyestradiol Sulfation

SULT

PAPS

PAP

2-Methoxyestradiol

2-Methoxyestradiol-3-O-Sulfate
Sulfation of 2-Methoxyestradiol by SULT1E1

(A) Activity, CPM x 10^{-3}

(B) Activity, NET CPM x 10^{-3}

(C) 1/Activity, CPM^{-1} x 10^{3}
Table 1.

SUBSTRATE KINETICS FOR SULT ISOFORMS:
REACTION WITH 2-METHOXYESTRADIOL

<table>
<thead>
<tr>
<th>Recombinant SULT Isoforms</th>
<th>Apparent Km Value (uM ± S.E)</th>
<th>Vmax Units/B-Gal units</th>
<th>V/K x 10^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A1*1</td>
<td>2.5 ± 0.1</td>
<td>2.97</td>
<td>1188</td>
</tr>
<tr>
<td>1A1*2</td>
<td>5.2 ± 0.4</td>
<td>3.79</td>
<td>729</td>
</tr>
<tr>
<td>1A1*3</td>
<td>1.6 ± 0.2</td>
<td>1.13</td>
<td>707</td>
</tr>
<tr>
<td>1A2*1</td>
<td>4.2 ± 0.3</td>
<td>1.56</td>
<td>372</td>
</tr>
<tr>
<td>1A2*2</td>
<td>11.1 ± 0.5</td>
<td>1.51</td>
<td>14</td>
</tr>
<tr>
<td>1A2*3</td>
<td>5.3 ± 0.3</td>
<td>0.34</td>
<td>65</td>
</tr>
<tr>
<td>1A3</td>
<td>91.4 ± 23.0</td>
<td>0.97</td>
<td>11</td>
</tr>
<tr>
<td>1B1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1C1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1E1</td>
<td>0.067 ± 0.0</td>
<td>1.65</td>
<td>24591</td>
</tr>
<tr>
<td>2A1</td>
<td>8.3 ± 0.9</td>
<td>0.21</td>
<td>25</td>
</tr>
<tr>
<td>2B1a</td>
<td>4.1 ± 0.1</td>
<td>0.51</td>
<td>124</td>
</tr>
<tr>
<td>2B1b</td>
<td>4.1 ± 0.3</td>
<td>0.71</td>
<td>173</td>
</tr>
<tr>
<td>4A1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND: No detectable signal
MEMORANDUM FOR Administrator, Defense Technical Information Center (DTIC-OCA), 8725 John J. Kingman Road, Fort Belvoir, VA 22060-6218

SUBJECT: Request Change in Distribution Statement

1. The U.S. Army Medical Research and Materiel Command has reexamined the need for the limitation assigned to technical reports written for this Command. Request the limited distribution statement for the enclosed accession numbers be changed to "Approved for public release; distribution unlimited." These reports should be released to the National Technical Information Service.

2. Point of contact for this request is Ms. Kristin Morrow at DSN 343-7327 or by e-mail at Kristin.Morrow@det.amedd.army.mil.

FOR THE COMMANDER:

Encl

PHYLIS M. RINEHART
Deputy Chief of Staff for Information Management