UNCLASSIFIED

AD NUMBER
ADB270791

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies only; Proprietary Information; Sep 2001. Other requests shall be referred to US Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, MD 21702-5012

AUTHORITY
USAMRMC ltr, 5 Mar 2002

THIS PAGE IS UNCLASSIFIED
Award Number: DAMD17-00-C-0037

TITLE: Clinical Comparative Bioavailability Study of ICN- and Roche-Manufactured 30 mg Pyridostigmine Bromide Tablets in Healthy Volunteers

PRINCIPAL INVESTIGATOR: Ronald Goldwater, M.D.
Michael Garvin, Ph.D.
Sandra Braun

CONTRACTING ORGANIZATION: PharmaKinetics Laboratories, Incorporated
Baltimore, Maryland 21201

REPORT DATE: September 2001

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Distribution authorized to U.S. Government agencies only (proprietary information, Sep 01). Other requests for this document shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702-5012.

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Clinical Comparative Bioavailability Study of ICN- and Roche-Manufactured 30 mg Pyridostigmine Bromide Tablets in Healthy Volunteers

4. TITLE AND SUBTITLE
Clinical Comparative Bioavailability Study of ICN- and Roche-Manufactured 30 mg Pyridostigmine Bromide Tablets in Healthy Volunteers

6. AUTHOR(S)
Ronald Goldwater, M.D.
Michael Garvin, Ph.D.
Sandra Braun

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
PharmaKinetics, Incorporated
Baltimore, Maryland 21201

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSORING / MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution authorized to U.S. Government agencies only (proprietary information, Sep 01). Other requests for this document shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702-5012.

13. Abstract (Maximum 200 Words) (abstract should contain no proprietary or confidential information)
Pyridostigmine Bromide 30 mg tablets manufactured by ICN Canada and Roche UK were studied in a two treatment, crossover design bioavailability study. Plasma samples obtained from the 30 healthy subjects that completed the study were analyzed using a validated LC/MS/MS method and concentrations were used to determine bioequivalence. The products were found to be bioequivalent based upon the 90% confidence intervals of the logarithmically transformed AUC 0-T, AUC 0-Infinity and CMAX. The confidence intervals surrounding the ratios of test versus reference means were within the 0.80 to 1.25 bioequivalence limits.

14. SUBJECT TERMS

15. NUMBER OF PAGES
11

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT
Unlimited
Table of Contents

Cover..

SF 298..

Objective... 4

Methods... 4

Results ... 5

Conclusions... 6
SUMMARY OF STUDY RESULTS

1.0 Title
Clinical Comparative Bioavailability Study of ICN- and Roche-Manufactured 30 mg Pyridostigmine Bromide Tablets in Healthy Volunteers

2.0 Objective
The objective of this study was to compare the relative bioavailability of pyridostigmine bromide 30 mg tablets manufactured by Roche UK with that of pyridostigmine bromide 30 mg tablets, manufactured by ICN Canada.

3.0 Methods
The study was conducted at PharmaKinetics Laboratories, Inc., Baltimore, Maryland, and included the clinical conduct, analytical determination of plasma pyridostigmine concentrations, and statistical analysis. Thirty-two healthy male and female subjects were enrolled in this two-treatment crossover study. Blood samples from all subjects who completed the study were to be analyzed. The subjects were to receive a single 30 mg oral dose of pyridostigmine bromide on two occasions separated by a washout period of one week. Blood samples were obtained at 17 time points from predose (0 hour) until 12 hours post-dose. The Clinical Summary details the conduct of the entire study.

The plasma samples were analyzed by a specific, validated LC/MS/MS method to determine pyridostigmine concentrations. The concentrations were used to calculate the area under the concentration-time curve to the last non-zero time point (AUC 0-T), elimination rate constant (Kel), half-life (T½) and AUC 0-Infinity (AUC 0-Inf). The actual times of sample collections were used in the calculations. The maximum drug concentration (CMAX) and the time to maximum drug concentration (TMAX) were also reported. The arithmetic mean and standard deviation were calculated for each parameter and for the pyridostigmine concentrations at each time point. The geometric means were calculated for AUC 0-T, AUC 0-Infinity and CMAX. All parameters were analyzed by analysis of variance (ANOVA) and an F-test to determine statistically significant differences (α=0.05). The analysis of variance included sequence, subject nested within sequence, period, and drug treatment in the statistical model. The power of the study to detect a 20% difference in parameter means as statistically significant at the 5% level of the t-distribution was calculated for each pharmacokinetic metric. The ratios of the test and reference means and geometric means were reported using least squares means from the ANOVAs. Bioequivalence was determined using the two one-tailed tests procedure, accomplished by constructing a 90% confidence interval.
for each difference in treatment means, and then re-expressing it as a confidence interval for the ratio of the means (test/reference). The products were considered bioequivalent if the 90% confidence interval about the ratio of means (test/reference) for logarithmically transformed AUC and CMAX were contained within the limits 0.80 to 1.25.

4.0 Results

Of the 32 subjects enrolled into the study, 30 subjects completed. Two of the subjects withdrew prematurely from the study. Subject 18 withdrew prior to entry of period II because of flu-like symptoms, including fever, chills, bodyache and coughing, experienced from June 28 through July 03, 2001. Subject 3 failed to return to the facility to complete period II.

The plasma samples were analyzed for the 30 completed subjects. The concentration of pyridostigmine at each time point after each product is summarized in Table 1 of this summary. The mean concentration at 2.33 and 5 hours after administration of the ICN product were statistically significantly higher (α=0.05) than the mean concentrations after administration of the Roche product. At all other times post-dose there were no statistically significant differences. The mean pyridostigmine concentration measured at each time point after administrations of the two products were plotted on a rectilinear scale (Figure 1) and on a semi-logarithmic scale (Figure 2).

The sampling schedule proved to be suitable for this bioavailability study. Eighty percent of AUC 0-Infinity was measured by AUC 0-T for 59 of the 60 estimates obtained. The first post-dose sample was not the maximum observed concentration after any of the doses. At least six post-dose samples were obtained before the average time of the maximum concentration.

The arithmetic means ± standard deviation for each parameter are presented in Table 2 and the results of the analysis of variance are presented in Table 3. The detailed analyses and tabulations are presented in the Drug Levels and Statistical Appendix I sections of this report.

There were statistically significant (α=0.05) differences between the formulations for AUC 0-T, CMAX and LN CMAX. There was no statistically significant sequence effect (α=0.10) or period effect (α=0.05) for any of the pharmacokinetic parameters.

Based on the least squares means of the logarithmically transformed parameters, the AUC 0-T and AUC 0-Infinity for the ICN test product were 9% and 8% higher than the respective estimates for the Roche reference product. The CMAX for the test
product was 11% higher than that for the reference product and occurred 5% later (6 minutes). The 90% confidence intervals for the parameters were AUC 0-T [1.01; 1.18], AUC 0-Infinity [1.00; 1.17] and CMAX [1.02; 1.20].

5.0 Conclusion
The pyridostigmine 30 mg tablet product manufactured by ICN Canada was observed to be bioequivalent to the 30 mg tablet product manufactured by Roche UK when both were administered under fasted conditions. The 90% confidence intervals surrounding the ratios of the test versus reference product means for AUC 0-T, AUC 0-Infinity and CMAX were within the 0.80 - 1.25 bioequivalence limits.
<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Test: ICN (Canada)</th>
<th></th>
<th>Ref: Roche (UK)</th>
<th></th>
<th>Ratio Test/Reference</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30 0.0000</td>
<td>30</td>
<td>0.0000</td>
<td>30 1.870 ± 1.491</td>
<td>1.31</td>
<td>N.S.</td>
</tr>
<tr>
<td>0.33</td>
<td>30 2.453 ± 1.973</td>
<td>30</td>
<td>10.07 ± 4.436</td>
<td>1.06</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>0.67</td>
<td>30 9.524 ± 5.684</td>
<td>30</td>
<td>11.86 ± 5.816</td>
<td>0.95</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>30 12.62 ± 6.182</td>
<td>30</td>
<td>13.60 ± 6.636</td>
<td>1.04</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>1.67</td>
<td>30 15.79 ± 7.425</td>
<td>30</td>
<td>14.31 ± 5.688</td>
<td>1.14</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30 16.30 ± 8.518</td>
<td>30</td>
<td>14.39 ± 5.012</td>
<td>1.14</td>
<td>p<0.05</td>
<td></td>
</tr>
<tr>
<td>2.33</td>
<td>30 15.27 ± 6.827</td>
<td>30</td>
<td>13.84 ± 6.746</td>
<td>1.11</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>2.67</td>
<td>30 14.84 ± 6.746</td>
<td>30</td>
<td>13.38 ± 4.788</td>
<td>1.12</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30 13.61 ± 5.996</td>
<td>30</td>
<td>12.18 ± 4.761</td>
<td>1.13</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>30 12.79 ± 5.882</td>
<td>30</td>
<td>11.33 ± 5.216</td>
<td>1.18</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30 11.53 ± 5.716</td>
<td>30</td>
<td>9.789 ± 4.350</td>
<td>1.16</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>30 9.593 ± 4.697</td>
<td>30</td>
<td>8.255 ± 3.763</td>
<td>1.16</td>
<td>P<0.05</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>30 6.982 ± 3.413</td>
<td>30</td>
<td>6.012 ± 2.700</td>
<td>1.16</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>30 3.780 ± 1.924</td>
<td>30</td>
<td>3.681 ± 1.967</td>
<td>1.03</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30 2.419 ± 1.396</td>
<td>30</td>
<td>2.245 ± 1.303</td>
<td>1.08</td>
<td>N.S.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>30 1.353 ± 1.011</td>
<td>30</td>
<td>1.287 ± 1.116</td>
<td>1.05</td>
<td>N.S.</td>
<td></td>
</tr>
</tbody>
</table>

Based on Type III test from the analysis of variance (α=0.05).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test: ICN (Canada)</th>
<th>Ref: Roche (UK)</th>
<th>Test/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln AUC 0-T Geometric Mean</td>
<td>4.3958 ± 0.4057</td>
<td>4.3066 ± 0.3585</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>81.11</td>
<td>74.19</td>
<td></td>
</tr>
<tr>
<td>Ln AUC 0-Inf Geometric Mean</td>
<td>4.4798 ± 0.3889</td>
<td>4.3993 ± 0.3512</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>88.22</td>
<td>81.39</td>
<td></td>
</tr>
<tr>
<td>Ln Cmax Geometric Mean</td>
<td>2.8878 ± 0.4356</td>
<td>2.7860 ± 0.3507</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>17.95</td>
<td>16.22</td>
<td></td>
</tr>
<tr>
<td>AUC 0-T (ng.h/mL)</td>
<td>87.88 ± 36.47</td>
<td>78.97 ± 29.24</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>41.5</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td>AUC 0-Inf (ng.h/mL)</td>
<td>95.00 ± 38.03</td>
<td>86.51 ± 32.13</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>40.0</td>
<td>37.1</td>
<td></td>
</tr>
<tr>
<td>Cmax (ng/mL)</td>
<td>19.71 ± 8.897</td>
<td>17.24 ± 6.455</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>45.1</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td>Tmax (h)</td>
<td>2.217 ± 1.014</td>
<td>2.111 ± 0.7170</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>45.8</td>
<td>34.0</td>
<td></td>
</tr>
<tr>
<td>Kel (1/h)</td>
<td>0.2677 ± 0.09552</td>
<td>0.2487 ± 0.05758</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>35.7</td>
<td>23.2</td>
<td></td>
</tr>
<tr>
<td>T1/2 (h)</td>
<td>2.804 ± 0.7254</td>
<td>2.920 ± 0.6429</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>25.9</td>
<td>22.0</td>
<td></td>
</tr>
</tbody>
</table>

1 Antilogarithm of the mean of the log transformed parameter.
TABLE 3: PHARMACOKINETIC PARAMETERS FOR PLASMA PYRIDOSTIGMINE
LEAST SQUARES MEANS ± STANDARD ERROR (N = 30)
#205-01-11618

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Test: ICN (Canada)</th>
<th>Reference Ref: Roche (UK)</th>
<th>Test/Reference</th>
<th>Significance</th>
<th>Study Power</th>
<th>Intrasubject C.V. (%)</th>
<th>90% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln AUC 0-T</td>
<td>4.3958 ± 0.0322</td>
<td>4.3066 ± 0.0322</td>
<td>1.09</td>
<td>N.S.</td>
<td>0.99</td>
<td>17.8</td>
<td>1.01; 1.18</td>
</tr>
<tr>
<td>Geometric Mean</td>
<td>81.11</td>
<td>74.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln AUC 0-Inf</td>
<td>4.4798 ± 0.0316</td>
<td>4.3993 ± 0.0316</td>
<td>1.08</td>
<td>N.S.</td>
<td>0.99</td>
<td>17.4</td>
<td>1.00; 1.17</td>
</tr>
<tr>
<td>Geometric Mean</td>
<td>88.22</td>
<td>81.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln Cmax Geometric Mean</td>
<td>2.8878 ± 0.0339</td>
<td>2.7860 ± 0.0339</td>
<td>1.11</td>
<td>p=0.0425</td>
<td>0.98</td>
<td>18.7</td>
<td>1.02; 1.20</td>
</tr>
<tr>
<td>AUC 0-T (ng.h/mL)</td>
<td>87.88 ± 2.951</td>
<td>78.97 ± 2.951</td>
<td>1.11</td>
<td>p=0.0416</td>
<td>0.95</td>
<td>19.4</td>
<td>1.02; 1.20</td>
</tr>
<tr>
<td>AUC 0-Inf (ng.h/mL)</td>
<td>95.00 ± 3.106</td>
<td>86.51 ± 3.106</td>
<td>1.10</td>
<td>N.S.</td>
<td>0.97</td>
<td>18.7</td>
<td>1.01; 1.18</td>
</tr>
<tr>
<td>Cmax (ng/mL)</td>
<td>19.71 ± 0.6933</td>
<td>17.24 ± 0.6933</td>
<td>1.14</td>
<td>p=0.0177</td>
<td>0.92</td>
<td>20.6</td>
<td>1.05; 1.24</td>
</tr>
<tr>
<td>Tmax (h)</td>
<td>2.217 ± 0.1072</td>
<td>2.111 ± 0.1072</td>
<td>1.05</td>
<td>N.S.</td>
<td>0.77</td>
<td>27.1</td>
<td>0.93; 1.17</td>
</tr>
<tr>
<td>Kel (1/h)</td>
<td>0.2677 ± 0.00769</td>
<td>0.2487 ± 0.00769</td>
<td>1.08</td>
<td>N.S.</td>
<td>0.99</td>
<td>16.3</td>
<td>1.00; 1.15</td>
</tr>
<tr>
<td>T1/2 (h)</td>
<td>2.804 ± 0.07065</td>
<td>2.920 ± 0.07065</td>
<td>0.96</td>
<td>N.S.</td>
<td>>0.99</td>
<td>13.5</td>
<td>0.90; 1.02</td>
</tr>
</tbody>
</table>

1 Antilogarithm of the least squares mean of the log transformed parameter.

The test of equality of the means, the power of the study to detect a 20% difference in parameters as statistically significant (α=0.05), and the 90% confidence intervals about the ratios of the test/reference means were calculated using the least squares means from the analysis of variance.
Figure 1: Mean Pyridostigmine Plasma Levels
#205-01-11618
N = 30

- Test: ICN (Canada)
- Ref: Roche (UK)
Figure 2: Mean Pyridostigmine Plasma Levels (Semi-log Scale)
#205-01-11618
N = 30

- Test: ICN (Canada)
- Ref: Roche (UK)
MEMORANDUM FOR Administrator, Defense Technical Information Center (DTIC-OCA), 8725 John J. Kingman Road, Fort Belvoir, VA 22060-6218

SUBJECT: Request Change in Distribution Statements

1. The U.S. Army Medical Research and Materiel Command has reexamined the need for the limitation assigned to technical reports written for grants. Request the limited distribution statements for Accession Documents listed at enclosure be changed to "Approved for public release; distribution unlimited." These reports should be released to the National Technical Information Service.

2. Point of contact for this request is Ms. Judy Pawlus at DSN 343-7322 or by e-mail at judy.pawlus@det.amedd.army.mil.

FOR THE COMMANDER:

Encl

PHYLLIS M. RINEHART
Deputy Chief of Staff for Information Management
DISTRIBUTION TO BE CHANGED TO UNLIMITED,
APPROVED FOR PUBLIC RELEASE

ACCESSION DOCUMENT NUMBERS

ADB267943 ADB267947
ADB257308 ADB268439
ADB233733 ADB242952
ADB263445 ADB248375
ADB258807 ADB240661
ADB257354 ADB271166
ADB240907 ADB258706
ADB270764 ADB244250
ADB241926 ADB258773
ADB246527 ADB254490
ADB268422 ADB268189
ADB252915 ADB270793
ADB258877 ADB266144
ADB268117 ADB263672
ADB267884 ADB259031
ADB254260 ADB270765
ADB268296 ADB270785
ADB258930 ADB268113
ADB271098 ADB270791