NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov’t. agencies only; Proprietary Information; Aug 2000. Other requests shall be referred to US Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, MD 21702-5012

AUTHORITY

USAMRMC ltr, 26 Aug 2002
Award Number: DAMD17-97-1-7074

TITLE: Identification and Characterization of Tumor Antigens Associated with Breast Cancer

PRINCIPAL INVESTIGATOR: Alicia Sanders Racelis.
Theresa V. Strong, Ph.D.

CONTRACTING ORGANIZATION: University of Alabama at Birmingham
Birmingham, Alabama 35294-0111

REPORT DATE: August 2000

TYPE OF REPORT: Annual.

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Distribution authorized to U.S. Government agencies only (proprietary information, Aug 00). Other requests for this document shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702-5012.

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE U.S. GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

LIMITED RIGHTS LEGEND

Award Number: DAMD17-97-1-7074
Organization: University of Alabama at Birmingham
Location of Limited Rights Data (Pages):

Those portions of the technical data contained in this report marked as limited rights data shall not, without the written permission of the above contractor, be (a) released or disclosed outside the government, (b) used by the Government for manufacture or, in the case of computer software documentation, for preparing the same or similar computer software, or (c) used by a party other than the Government, except that the Government may release or disclose technical data to persons outside the Government, or permit the use of technical data by such persons, if (i) such release, disclosure, or use is necessary for emergency repair or overhaul or (ii) is a release or disclosure of technical data (other than detailed manufacturing or process data) to, or use of such data by, a foreign government that is in the interest of the Government and is required for evaluational or informational purposes, provided in either case that such release, disclosure or use is made subject to a prohibition that the person to whom the data is released or disclosed may not further use, release or disclose such data, and the contractor or subcontractor or subcontractor asserting the restriction is notified of such release, disclosure or use. This legend, together with the indications of the portions of this data which are subject to such limitations, shall be included on any reproduction hereof which includes any part of the portions subject to such limitations.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.
Identification and Characterization of Breast Tumor and Associated Antigens

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
August 2000

3. REPORT TYPE AND DATES COVERED
Annual (1 Aug 99 - 31 Jul 00)

4. TITLE AND SUBTITLE
Identification and Characterization of Breast Tumor and Associated Antigens

5. FUNDING NUMBERS
DAMD17-97-1-7074

6. AUTHOR(S)
Alicia A. Sanders Racelis
Theresa Strong, Ph.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Alabama at Birmingham
Birmingham, Alabama 35294-0111

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSORING / MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12. DISTRIBUTION / AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT: Distribution authorized to U.S. Government agencies only (proprietary information, Aug 90). Other requests for this document shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702-5012.

13. ABSTRACT (Maximum 200 Words)
Recently, identification of tumor-associated antigens (TAAs) have led to an increased interest in vaccination strategies to treat cancer and/or prevent cancer relapse. Immunotherapy can be used as an adjuvant with other systemic therapy to target micro-metastatic disease and prevent cancer recurrence. Although preclinical/clinical trials using identified tumor-associated antigen for tumor vaccination are ongoing in melanoma and other cancers, breast cancer immunotherapy is limited, due to the limited numbers of breast tumor-associated antigens identified to date. Previously, three candidate breast tumor-associated antigens were identified in our lab by serological analysis of recombinant cDNA expression libraries (SEREX) derived from primary breast tumor and breast cancer cell lines (2-1-1, 7-3 and S3.2). Initial characterization of these candidates by northern blot analysis revealed that 2-1-1 expression is tumor-specific while S3.2 clone is over-expressed in tumor. Although the expression of clone 7-3 is not restricted, its immunoreactivity is positive in high proportion of breast cancer patient sera (7/14). The evaluation of these putative tumor-antigens at the molecular level as well as further evaluation of their immunogenicity may provide insight in breast tumor biology as well as additional targets for breast cancer immunotherapy.

14. SUBJECT TERMS
Breast Cancer, antigen, tumor immunology

15. NUMBER OF PAGES
24

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT
Unlimited
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td></td>
</tr>
<tr>
<td>SF 298</td>
<td>2</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>5-9</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>10</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>11</td>
</tr>
<tr>
<td>Conclusions</td>
<td>12</td>
</tr>
</tbody>
</table>

Appendices:

Manuscript: (3 copies)

Introduction

The recent identification and characterization of tumor-associated antigens (TAAs) has led to increased interest in vaccination strategies to treat cancer and/or prevent cancer relapse. Animal models suggest that these tumor-associated antigens, when presented properly by antigen-presenting cells can break host's tolerance toward its tumor and induce specific antitumor immunity, which results in tumor rejection. Immunotherapy can be used as an adjuvant with other systemic therapy to target micro-metastatic disease and prevent cancer recurrence. While the preclinical/clinical trials focusing on using identified tumor-associated antigen for tumor vaccination are ongoing in melanoma and other cancers, breast cancer immunotherapy is limited, in part due to the limited numbers of breast tumor-associated antigens identified to date. In previous work supported by this grant, three candidate breast tumor-associated antigens were identified by serological analysis of recombinant cDNA expression libraries (SEREX) derived from primary breast tumor and breast cancer cell lines (2-1-1, 7-3 and S3.2). The initial characterization of these candidates by northern blot analysis revealed that 2-1-1 expression is tumor-specific while S3.2 clone is over-expressed in tumor. Although the expression of clone 7-3 is not restricted, its immunoreactivity is positive in high proportion of breast cancer patient sera (7/14). These three clones are not reactive with normal human serum (n>22). The evaluation of these putative tumor-antigens has included the molecular analysis of their expression patterns in panels of normal and tumor tissue at the mRNA level. Additional studies will focus on determination of their immunogenicity. The potential of these putative tumor-antigens as targets for immunotherapy may provide insight in breast tumor biology as well as additional targets for breast cancer immunotherapy.

Statement of Work (Revised 11/99)

Task 1: Complete molecular characterization of candidate tumor antigens:
- Complete sequence analysis of tumor antigens (specifically clone 2-1-1) (80% complete)
- Complete expression analysis by Northern blot in tumor and normal tissue (complete)
- Complete studies of reactivity of antigens with allogeneic patient sera (partially complete)
- Complete mutational analysis (partially complete)

Task 2 Assess immunogenicity of putative tumor antigens: (initiated)
- Produce RNA
- Transfect dendritic cells and assay for ability to induce primary immune response in autologous T cells in healthy individuals and individuals with breast cancer
BODY

1. Three candidate human breast tumor antigens have been identified in our laboratory by SEREX analysis.

Previously, three candidate antigens were identified and the clones were named 2-1-1, 7-3 and S3.2. For the identification of 2-1-1 and 7-3 clone, a recombinant cDNA expression library was constructed from four breast cancer cell lines: MCF-7, MDA-MB453, T47D, and ZR75-1 (kindly provided by J.M. Ruppert) and was immunoscreened for reactivity with high-titered IgG antibodies presented in serum from six individuals with advanced breast cancer. For the identification of clone S3.2, a cDNA library was constructed from tumor of a patient with advanced breast cancer and immunoscreened with autologous serum. The reactive plaques were purified, restriction digested to identify clonal similarity. The identified clones were then submitted to in vivo excision of pBluescript phagemids into plasmid form for further characterization.

2. Initial characterization of these candidate antigens has been accomplished.

2.1 Seroactivity analysis

The frequency of antibody response to candidate antigens was examined among normal and patient sera. Briefly, phage containing three individual inserts were mixed 50/50 with no-insert vector as negative control and plated. After a 4-hour incubation at 42°C, protein expression was induced by incubating plates with isopropyl β-D-thiogalactoside (IPTG) for an additional 4 hours. Filters were lifted, blocked and incubated with sera from normal individuals and patients with breast, ovarian or head and neck carcinoma. Sera was preabsorbed with E.coli phage lysate and diluted to 1:250. Alkaline phosphatase conjugated goat anti-human antibodies (Jackson laboratory) and an NBT/BCIP colorimetric assay was used to detect positive reactions.

From the preliminary data we found that these three putative breast tumor antigens are promising in that reactivity with normal human sera has not yet been detected. Interestingly, clone 7-3 is reactive with the large proportion of breast cancer patients (7/14), suggesting that reactivity with the antigen may be common, and perhaps specific for breast cancer patients. Additional studies will be needed. The seroactivity of these three clones are summarized in table1.
Table 1. IgG antibody reactivity with putative breast tumor antigens

<table>
<thead>
<tr>
<th>Clone Name</th>
<th>Breast Cancer Sera</th>
<th>Ovarian Cancer Sera</th>
<th>Head & Neck Cancer Sera</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-3</td>
<td>7 of 14</td>
<td>0 of 7</td>
<td>0 of 7</td>
<td>0 of 22</td>
</tr>
<tr>
<td>2-1-1</td>
<td>2 of 16</td>
<td>0 of 10</td>
<td>n/d</td>
<td>0 of 25</td>
</tr>
<tr>
<td>S3-2</td>
<td>2 of 30</td>
<td>0 of 3</td>
<td>0 of 7</td>
<td>0 of 30</td>
</tr>
</tbody>
</table>

Sera from individuals with carcinoma of the breast, ovary, or head and neck were evaluated for reactivity with the candidate antigens. None of the clones was reactive with normal human sera. The number of positive serum samples and the total number tested are given. Positive samples were reactive with the plaque encoding the putative breast tumor antigens at a dilution of 1:250.

2.2 Sequence analysis of identified clones.
Restriction enzyme mapping and 5' and 3' sequencing revealed that these clones had inserts of different sizes ranging from approximately 1.3 to 3.0 kb. Sequencing analysis of cDNA inserts was carried out by automatic thermal cycle sequencing machine at core facility center at UAB using the T3 and T7 primers in the vector. Specific internal oligonucleotides were designed as the sequencing progressed. Sequence alignment was performed with BLAST search (homology search run through the National Center for Biotechnology Information).

The S3.2 clone was found to have homology with several described expressed sequence tags (ESTs). Several short open reading frames were identified. However the relevant ORF and epitope(s) have not yet been determined. Partial sequence analysis of 7.3 clone revealed it to be the apparent human homologue of mouse Mem3 gene. Both 5' and 3' ends of the insert exhibit strong homology with this gene, and the insert is of the approximate size, suggesting that the isolated clone encodes the entire gene. This gene is reported to be expressed at high levels in the mouse embryos and at low levels in adult tissues. Its exact function is not known, but it shares homology with a yeast sorting protein. To date, approximately 80% of 2-1-1 clone has been sequenced. Sequence homology as determined by BLAST search revealed that the insert has strong homology (99%) to the N-terminal domain of human M-phase phosphoprotein1, a cell cycle protein involved in disassembly of interphase structures and generation of M phase enzymatic activities and structures (figure 1).
2.3 Analysis of expression pattern

The expression of these genes was analyzed by northern blot hybridization using 10 microgram of total RNA from panels of normal tissues, primary breast tumors, breast cancer, ovarian cancer and melanoma cell lines blotted onto nylon membranes.

For S3.2 insert, we detected a moderate expression of 1.3 kb transcript in normal white blood cell, fibroblast, liver, ovarian and oral tissue. We detected the high expression of the same transcript size in 4/4 primary breast tumor, 2/2 melanoma, and 3/3 breast cancer cell lines. Thus, this transcript appears to be overexpressed in tumor cells. Figure 2

For clone 2-1-1, no expression was detected in the panel of normal tissues mentioned above. Weak expression signal of approximately 6 kb transcript was detected in 2/4 primary breast tumors, 2/2 melanoma cell lines. Moderate signals were detected in 4/4 breast cancer cell lines and 4/4 ovarian cancer cell lines. Thus far, the transcript appears to be specifically expressed in tumor cells. Given that 3.0 kb insert demonstrated strong homology to a portion of human M-phase phosphoprotein1 (MPP1) cDNA and its transcript size also correlate with the size of MPP1 cDNA, this clone apparently represent MPP1. Figure 2

For 7.3 clone, northern blot analysis showed moderate expression of 2.3 kb transcript in normal breast epithelium and 4 ovarian cancer cell lines and 4 breast cancer cell lines that were used to construct the cDNA libraries in this experiment. Four additional breast tumors showed similar high-level expression (not shown).

In summary, we have identified three candidate breast tumor-associated antigens. Initial molecular characterization demonstrates favorable characteristic (expression pattern, seroreactivity) consistent with tumor antigens. Our plan is to continue with the molecular characterization of these antigens. We will also perform more extensive analysis of the immune response elicited by these antigens and the relevance of that immune response to breast cancer. These studies will allow us to determine if these proteins may be useful for diagnostic testing, staging and/or for immunotherapy of this disease.
Figure 1. Alignment of clone 2-1-1(Query) with human M-phase phosphoprotein-1 cDNA(Sbjct). This alignment shows the high degree of homology between the two genes. The size of 2-1-1 transcript is also correlated with MPP-1 full length cDNA, suggesting that 2-1-1 clone represents MPP-1.
Expression of S3.2 in normal tissue, tumor cell lines, and a primary breast tumor

<table>
<thead>
<tr>
<th>normal tissues</th>
<th>tumor cell lines/tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5</td>
<td>6 7 8 9</td>
</tr>
</tbody>
</table>

1. liver
2. ovary
3. oral epithelium
4. white blood cells
5. fibroblast
6. Melanoma 624
7. Melanoma 888
8. MDA-MB-453 (breast)
9. Primary Breast tumor

Expression of 2-1-1 in primary breast tumors and breast cancer cell lines

<table>
<thead>
<tr>
<th>Primary Breast Tumors</th>
<th>Breast Cancer Cell Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4</td>
<td>5 6 7</td>
</tr>
</tbody>
</table>

1. Breast tumor 1
2. Breast tumor 2
3. Breast tumor 3
4. Breast tumor 4
5. ZR 75
6. T47D
7. MDA-MB-453

Figure 2. Northern blot analysis of S3.2 and 2-1-1 in RNA from normal tissues (liver, ovary, oral cavity, white blood cells, fibroblast), tumor cell lines (melanoma 624, melanoma 888, breast MDA-MB-453) and primary breast tumor. 3a) S3.2 probe recognizes a transcript of approximately 1.3 kb in size. Moderate level of expression were detected in normal tissues, while high level expression were found in tumor cell lines and primary breast tumor tissues. Four additional breast tumors show similar, high level expression (not shown). 3b) 2-1-1 probe recognizes a transcript of approximately 6 kb in size. Northern blot analysis revealed expression in 2 of 4 primary breast tumors, as well as ovarian and melanoma cell lines. Expression in normal tissue was absent (not shown).
Key Research Accomplishments

1. Serological studies revealed promising immunoreactivity for all three clones. Clone 7-3 is highly reactive with 7/14 breast cancer patient sera.

2. Sequence analysis of the three clones further characterized the putative tumor antigens as follows:

Clone S3.2 has homology with several ESTs, yet the ORF has yet to be determined.

Clone 7.3 appears to be the human homologue of the murine Mem3 gene which is highly expressed in murine embryos but at low levels in adults.

80% of clone 2-1-1 has been sequenced and it shows 99% homology to human M-phase phosphoprotein which is a cell cycle protein involved in disassembly of interphase structures and the generation of the m phase.

3. Expression analysis is summarized in Table 2

Table 2. Expression Analysis. This table shows the results of Northern blot analysis.

<table>
<thead>
<tr>
<th>Clone Expression</th>
<th>Tissue Expression</th>
<th>Level of</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3.2</td>
<td>White blood cells, fibroblasts, liver, ovarian and oral tissue.</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>4/4 primary breast tumors, 2/2 melanoma tumors and 3/3 breast cancer cell lines.</td>
<td>High</td>
</tr>
<tr>
<td>2-1-1</td>
<td>White blood cells, fibroblasts, liver ovarian and oral tissue.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>4/4 breast cancer cell lines, 4/4 ovarian tumor cell lines.</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>2/4 primary breast tumors, 2/2 melanoma cell lines.</td>
<td>High</td>
</tr>
</tbody>
</table>
Reportable Outcomes

Manuscripts, Abstracts and Presentations

1. Manuscript:

2. Abstracts and Presentations:

Degree Obtained:
The initial principal investigator, Tracy Hampton, received her Ph.D. based on this work.

Employment/Training
Tracy Hampton received her Ph.D. and received, as a result of this work, a Postdoctoral Fellowship at Stanford University.
Conclusions
Currently potential target antigens for breast cancer immunotherapy are HER-2/neu protein, carcinoembryonic antigen (CEA), MAGE-1, and MUC-1. These antigens are pursued based on their high level expression in breast tumor tissue compared to normal tissue as well as an understanding of epitopes recognized by CTLs. Because each of these antigens is expressed only on a portion of breast tumors, only a portion of breast cancer patients may benefit from therapy directed at these targets. Expanding the list of antigen targets will be of considerable importance in the development of effective immunotherapy strategies. The analysis of the candidate antigens we have identified at DNA, mRNA and protein level in a number of normal tissues, breast tumors and other tumor types will delineate the expression pattern of these antigens and may provide a better understanding of the role(s) of these proteins in breast cancer. It will also be important to assess the population of breast cancer patients who have circulating antibodies against these antigens. This information is crucial for the design of vaccine strategies, because it is necessary to know which proportion of breast cancer patients express the gene and where the gene is normally expressed.

His-tagged fusion proteins have been made from these clones in order to further extend the analysis of the antibody response to these candidate antigens. These His-tag fusion proteins will provide relatively rapid affinity-purification of fusion protein for the generation of polyclonal antibodies which will be used in immunohistochemistry studies and in situ hybridization (ISH). The investigation of gene expression by ISH will help to determine the expression pattern of these transcripts directly in tissue. ISH can also be used for co-evaluation with the results obtained from immunohistochemistry.

The goal is to develop an ELISA-based screening using sera from a large number of cancer patients and healthy individuals. This will allow the determination of the frequency of antibodies against these proteins in different populations. We will increase the number of normal serum to 50 individuals and approximately 50 additional serum samples from breast, ovarian and melanoma cancer patients will be obtained in order to expand the study. DNA sequences on these clones will be completed and compared to public database sequences. For S3.2 whose expression is increased in tumor compared to normal tissue, Southern blot analysis will be performed to identify possible genomic amplification or rearrangement.

The characterization of breast tumor-associated antigens is important for the understanding of genetics, antigenicity and progression of breast tumors. Furthermore, well-characterized tumor associated antigens can be used as targets for cancer immunotherapy to enhance host
tumor-specific immune response. The remaining year of funding will focus on completing molecular characterization of these antigens and evaluating immunogenicity.
SEREX analysis for tumor antigen identification in a mouse model of adenocarcinoma

Tracy A. Hampton, 1, 2 Robert M. Conry, 2 M. B. Khazaiei, 2 Denise R. Shaw, 2 David T. Curiel, 1, 2 Albert F. LoBuglio, 2 and Theresa V. Strong 1, 2

1 Gene Therapy Center, 2 Division of Hematology/Oncology, Department of Medicine, and 3 Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294.

Evaluation of immunotherapy strategies in mouse models of carcinoma is hampered by the limited number of known murine tumor antigens (Ags). Although tumor Ags can be identified based on cytotoxic T-cell activation, this approach is not readily accomplished for many tumor types. We applied an alternative strategy based on a humoral immune response, SEREX, to the identification of tumor Ags in the murine colon adenocarcinoma cell line MC38. Immunization of syngeneic C57BL/6 mice with MC38 cells by three different methods induced a protective immune response with concomitant production of anti-MC38 antibodies. Immunoscreening of an MC38-derived expression library resulted in the identification of the endogenous ecotropic leukemia virus envelope (env) protein and the murine ATRX protein as candidate tumor Ags. Northern blot analysis demonstrated high levels of expression of the env transcript in MC38 cells and in several other murine tumor cell lines, whereas expression in normal colonic epithelium was absent. ATRX was found to be variably expressed in tumor cell lines and in normal tissue. Further analysis of the expressed env sequence indicated that it represents a nonmutated tumor Ag. Polynucleotide immunization with DNA encoding the env polypeptide resulted in strong and specific antibody responses to this self Ag in all immunized mice. Thus, SEREX offers a rapid means of identifying tumor Ags in murine cancer models. Cancer Gene Therapy (2000) 7, 446–455

Key words: Tumor antigen; endogenous retrovirus; antibody; adenocarcinoma; ATRX.

The concept of cancer immunotherapy is predicated on the existence of tumor-associated antigens (TAAs) against which the host is capable of mounting an immune response, leading to tumor rejection. To this end, immune responses in tumor-bearing individuals have been described for a variety of mutant tumor antigens (Ags), such as mutant p53 1, 2 and ras 3, 4 as well as nonmutant tumor proteins including erbB-2 5, 6 MART-1 7, 8 MAGE-1 9, 10 tyrosinase 11, 12, 13 and MUC-1 14, 15 Such tumor-specific responses suggest that the immune system may be amenable to strategies that further induce or enhance patients' immune responses to their own tumor cells. Important to the concept of developing effective immunotherapies is the ability to break immunological tolerance to self Ags. However, the ability to evaluate approaches for breaking tolerance to specific Ags in mouse models of cancer is limited by the fact that few murine tumor Ags have been described to date. Accordingly, many murine immunotherapy models use heterologous Ags (for example, Refs. 17–19), which may not address issues critical to the development of effective immunotherapeutic strategies. A more complete understanding of the spectrum of murine Ags capable of eliciting antitumoral immune responses is needed to better understand the interaction of cancer and the immune system as well as for the development of more effective cancer vaccines.

Several methods have been employed to isolate and clone TAAs. Due to the critical role of cytotoxic T lymphocytes (CTLs) in mediating antitumoral immunity, these approaches have largely consisted of the isolation of Ags recognized by CTLs that have been expanded in vitro. Tumor Ags have been identified in this manner by acid elution of antigenic peptides bound to major histocompatibility complex class I molecules. 20 A second, genetic approach assays CTL responsiveness to target cells transfected with cDNA libraries to identify immunogenic peptides. 21, 22 Although these approaches have proven valuable for TAA identification in some tumor types, particularly human melanoma, widespread application is hampered by difficulties in establishing long-term CTL cultures. In addition, it has not yet been established that CTLs generated in vitro are representative of the tumor-specific CTLs in vivo. Thus, complementary approaches for the identification of novel immunogenic tumor Ags are warranted.

The activation of CTL responses is dependent upon T-helper (Th) cells and may be accompanied by the induction of humoral immunity. Indeed, humoral im-

Received April 13, 1999; accepted May 31, 1999.
Address correspondence and reprint requests to Dr. Theresa V. Strong, WTI 520, 1824 6th Avenue South, University of Alabama at Birmingham, Birmingham, AL 35294-3300. E-mail address: theresa.strong@ccc.uab.edu

mune responses to known TAAs have been described in tumor-bearing individuals. The presence of antibodies (Abs) directed toward known tumor Ags suggests the potential usefulness of serum for the identification of novel TAAs. The feasibility of such a strategy for identifying tumor Ags was demonstrated by Sahin et al., who identified both known and novel tumor Ags using autologous sera from cancer patients to screen tumor-derived expression libraries, an approach they termed “serologic identification of Ags by recombinant expression cloning” (SEREX). This technique has succeeded in greatly expanding the scope of human tumor Ags. By comparison, the catalog of cloned mouse tumor Ags remains quite small.

Mouse models of syngeneic tumors provide a useful system in which to investigate the nature of TAAs. The MC38 colonic adenocarcinoma cell line was derived from C57BL/6 mice treated with the carcinogen 1,2-dimethylhydrazine. These cells produce tumors when injected subcutaneously in syngenic mice, but immunization of naive syngeneic mice with MC38 cells can induce an immune response that mediates tumor rejection upon challenge with an otherwise lethal dose of live cells. Thus, these cells express cryptic tumor Ags that stimulate antitumoral immune responses in vivo. Here, we describe the application of SEREX technology toward the identification of MC38 Ags. This approach identified the endogenous ectropic retroviral envelope (env) and the murine ATRX proteins as putative tumor Ags in these cells. These Ags were reactive with sera from mice immunized with MC38 cells in three different ways. The env protein was found to be a nonmutant tumor Ag, and polynucleotide immunization was used to demonstrate that an immune response could be elicited to this self Ag. These studies demonstrate the utility of SEREX as a means to rapidly identify murine tumor Ags for further evaluation in immunotherapy models.

MATERIALS AND METHODS

Cell lines and culture conditions

MC38 and MC38-CEA-2 cells were kindly provided by Dr. Steven Rosenberg (National Cancer Institute, Bethesda, Md) and were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal calf sera (FCS). B16 is a mouse melanoma cell line that arose spontaneously in C57BL/6 mice. These cells were maintained in Eagle’s minimal essential medium with 10% FCS. The mouse lymphoma cell line EL4, a chemically induced line derived from a C57BL/6 mouse, was maintained in DMEM supplemented with 10% horse sera. The mouse mammary tumor cell lines 4T01 and 4T07 are sublines of a spontaneously arising mammary tumor in a BALB/c mouse. These cells were maintained in Eagle’s minimal essential medium with 10% FCS. CT26 cells are colon adenocarcinoma cells from a BALB/c mouse induced by N-nitroso-N-methylurethane; they were cultured in RPMI 1640 with 10% FCS. P815, a mastocytoma line derived from a DBA/2 mouse, was maintained in RPMI 1640 with 10% FCS. C2C12, a mouse myoblast cell line (American Type Culture Collection, Manassas, Va), was maintained in DMEM with 10% FCS.

Immunization protocol

To elicit anti-MC38 immune responses, groups of 12 mice were immunized in one of three ways. Group I mice were injected with 5 x 10^6 MC38 cells into the right foot pad and tumors were excised 10–14 days later. A total of 10 of 12 mice survived the amputation and were available for challenge on day 29 with 3 x 10^5 cells injected subcutaneously into the flank. A total of 8 of the 10 mice rejected the day 29 tumor challenge and received a second identical tumor challenge on day 79, followed 14 days later by exsanguination to harvest sera. Group II mice were injected subcutaneously on days 1 and 15 with 1 x 10^6 MC38 cells that had been irradiated with 15,000 cGy. Mice were then challenged with 3 x 10^5 nonirradiated tumor cells on day 29. A total of 3 of 12 animals developed tumors and were sacrificed. The remaining nine animals were rechallenged with 3 x 10^5 nonirradiated tumor cells on day 54. Sera were collected from these animals 14 days later. Group III animals were immunized with a plasmid DNA encoding human carcinoembryonic Ag (CEA) and challenged with MC38 cells stably transfected to express human CEA (MC38-CEA-2). We have shown previously that polynucleotide immunization with a CEA-encoding plasmid results in reliable rejection of MC38-CEA-2 cells. Thus, 12 mice received intramuscular injections of 50 μg of plasmid-encoding CEA on days 1 and 15, followed by tumor challenge with 3 x 10^5 MC38-CEA-2 cells on days 29, 41, and 54. A total of 8 of 12 mice successfully rejected all three challenges with MC38-CEA-2 cells, and sera were collected from these mice 14 days after the last challenge. In each of the three immunization experiments described above, tumors grew in 12 of 12 naive control mice, validating each challenge with MC38 or MC38-CEA-2 tumor cells.

Assay for Ab response to intact tumor cells

To determine whether the various immunization strategies had elicited an Ab response to MC38 tumor cells, a cell-binding assay was performed as described previously. Briefly, tumor cells were washed with phosphate-buffered saline (PBS) and 5 x 10^5 cells were aliquoted per tube in 100 μL of PBS with 1% bovine serum albumin (PBE). Each tube then received 100 μL of a 1/10 dilution of immune sera or normal mouse sera in PBE, and the cell/serum mixture was incubated at room temperature for 1 hour on an orbital shaker. Cells were then washed with 3 mL of PBS to remove unbound Ab. After washing, the cells were resuspended in 100 μL of PBS containing 0.1% pigskin gelatin and 100 ng of ^3^H-labeled Staphylococcus aureus protein A (SPA) (200,000 cpm per tube), and incubated for 1 hour at room temperature with shaking. SPA was obtained from Sigma (St. Louis, Mo) and was radiolabeled by the iodogen method (Pierce, Rockford, Ill). The cells were washed with 4 mL of PBS and counted in a gamma scintillation counter. The specific activity of the ^3^H-labeled SPA was used to convert counts per minute bound to the number of molecules bound per cell. The SPA binding to cells incubated in PBE only (no sera) was subtracted as nonspecific binding. MC38-CEA-2 cells incubated with CEA-specific monoclonal Ab (COL-1) served as a positive control.

cDNA library construction and immnoscreening

Total RNA from MC38 cells or MC38-CEA-2 cells was isolated using an RNA Stat 60 RNA isolation reagent (Tel-Test B), and mRNA was isolated on oligo(dT) beads (PolyA-Quik mRNA isolation kit, Stratagene, La Jolla, Calif). A cDNA library was constructed in the Zap Express vector (Stratagene), which is capable of directing expression in both
prokaryotic and eukaryotic hosts. Briefly, mRNA was reverse transcribed using an oligo(dT) primer with an internal XhoI site as well as a random primers that included an XhoI restriction site at the end. The reverse transcription reaction included 5'-methyl deoxycytidine triphosphate. After second-strand synthesis, EcoRI adapters were added by ligation and the cDNA was restricted with XhoI. cDNA fragments were cloned into the directional Lambda Zap Express vector, packaged, and used to infect Escherichia coli cells. As a preliminary characterization of the library, inserts from random plaques were amplified by polymerase chain reaction (PCR) and demonstrated insert sizes ranging from ~300 bp to 3.5 kb with >90% recombinants (data not shown).

For immunoscreening, recombinant plaques were plated at a density of ~20,000 plaques per 150-mm plate, and protein expression was induced using nitrocellulose filters saturated with isopropyl β-D-thiogalactoside. Filters were lifted, blocked with 1% bovine serum albumin in Tris-buffered saline (20 mM tris(hydroxymethyl)aminomethane (Tris) (pH 7.5) and 150 mM NaCl), and screened with sera from mice immunized as described above to detect reactive plaques. Primary mouse sera were preabsorbed with E. coli phage lysate (Stratagene) and diluted 1/250 for screening. After incubating filters with diluted mouse sera, the filters were washed with Tris-buffered saline with 0.05% Tween 20 (Sigma) and incubated with alkaline phosphate-conjugated goat anti-mouse immunoglobulin G (IgG) Abs (Stratagene) at a dilution of 1/5000 for 1 hour at room temperature. After washing, a nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate colorimetric substrate enzyme, electrophoresed on a 1% agarose gel, and transferred to a nylon membrane (Amersham). The membrane was hybridized with a probe specific for the mouse β-actin gene (Stratagene).

Southern blot analysis

For Southern blot analysis, genomic DNA from MC38 cells, B16 cells, and normal colonic epithelial cells was isolated by lysis in 50 mM Tris (pH 8.0), 10 mM EDTA, 10 mM NaCl, and 1% SDS, and by treatment with 100 μg/mL Proteinase K overnight at 50°C. After phenol/chloroform extraction, the DNA was precipitated with ethanol and resuspended in 10 mM Tris and 1 mM EDTA (pH 8.0). Approximately 10 μg of DNA was subjected to digestion with the appropriate restriction enzyme, electrophoresed on a 1% agarose gel, and transferred to a nylon membrane (Amersham). The membrane was hybridized with an env- or an ATRX-specific probe as described above.

Northern blot analysis

For immunoscreening, recombinant plaques were plated at a density of ~20,000 plaques per 150-mm plate, and protein expression was induced using nitrocellulose filters saturated with isopropyl β-D-thiogalactoside. Filters were lifted, blocked with 1% bovine serum albumin in Tris-buffered saline (20 mM tris(hydroxymethyl)aminomethane (Tris) (pH 7.5) and 150 mM NaCl), and screened with sera from mice immunized as described above to detect reactive plaques. Primary mouse sera were preabsorbed with E. coli phage lysate (Stratagene) and diluted 1/250 for screening. After incubating filters with diluted mouse sera, the filters were washed with Tris-buffered saline with 0.05% Tween 20 (Sigma) and incubated with alkaline phosphate-conjugated goat anti-mouse immunoglobulin G (IgG) Abs (Stratagene) at a dilution of 1/5000 for 1 hour at room temperature. After washing, a nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate colorimetric substrate enzyme, electrophoresed on a 1% agarose gel, and transferred to a nylon membrane (Amersham). The membrane was hybridized with a probe specific for the mouse β-actin gene (Stratagene).

RESULTS

Immunization and detection of Abs directed against MC38 Ags

Three groups of mice were immunized to generate sera reactive with MC38 cells. Group I mice were injected with MC38 cells with subsequent tumor excision, and group II animals were immunized with irradiated MC38 cells. Both of these groups were then challenged with live MC38 cells, which were rejected by most animals (17 of 22). A third group of animals was immunized with plasmid DNA encoding human CEA (pCEA) and challenged with MC38 cells expressing CEA, as reported previously. A total of 8 of 12 animals in this group rejected three consecutive tumor challenges. After the immunization schedules were completed, the presence of MC38-reactive Abs was detected in an MC38 cell-binding assay (Fig 1). All three groups of immunized...
mice demonstrated high levels of Ab binding to intact MC38 cells, whereas naive mouse sera did not. Mice immunized with pCEA and challenged with MC38-CEA-2 cells produced Abs to the parental MC38 cells in addition to CEA-specific Abs, as manifested by increased Ab binding to MC38-CEA-2 cells compared with parental MC38 cells. Thus, these serum samples contained Abs that were useful for detection of cryptic TAAs in MC38 cells.

Identification of reactive plaques

Sera from immunized animals (group III) were used to screen an MC38-derived cDNA library. Reactive plaques were then purified to homogeneity in secondary and tertiary screens. Screening of ~10^6 plaques resulted in the identification of two independent positive plaques. Amplification of the insert of one of these plaques by PCR demonstrated the presence of a 1.3-kb insert. Importantly, sera from animals immunized with MC38 cells by all three routes described above (groups I, II, and III) were strongly reactive with the 1.3-kb plaque (Fig 2). Isotype analysis revealed that reactive Abs were predominantly IgG2a and IgG2b, with IgM and IgG1 being weakly reactive (data not shown). Dideoxy sequencing was performed on rescued plasmid DNA using the T3 and T7 primers present in the vector. A search of the National Center for Biotechnology database revealed the identity of the clone with a portion of the endogenous ecotropic leukemia proviral sequence (MuLV). This insert sequence includes the 3’ portion of the env protein sequence (env) as well as the 3’ long terminal repeat (LTR) (GenBank accession numbers J01998 and U63133) (Fig 2). The clone contains base pairs 7071–8374 of the published sequence, corresponding to amino acid 430 to the C terminus of the env protein. The env polypeptide encoded by this clone includes the last one-third of the extracellular portion of the protein, as well as the entire transmembrane domain. A 99-bp deletion of the 3’ LTR was also noted, as discussed below.

The second plaque had an insert size of ~2.8 kb and was also reactive with all groups of MC38-immunized animals. Sequence analysis of the insert revealed that it represents a portion (base pairs 503–3327) of the murine
Figure 2. Identification of a positive clone as the murine endogenous ecotropic retrovirus env gene. A: Reactivity of immune sera with a 1.3-kb clone. Sera from each group of immunized mice (AS1-antisera from group I mice, AS2-antisera from group II mice, AS3-antisera from group III mice) from plates of purified plaques expressing a 1.3-kb portion of the envelope gene (1.3-kb insert) or a negative control (negative insert). B: Partial sequence analysis of the 1.3-kb clone, which was reactive with sera from all three groups of immunized mice, aligned with the sequence of the murine endogenous ecotropic retrovirus. Approximately 200 bp of the 5' end of the 1.3-kb clone is shown in alignment with the endogenous ecotropic murine leukemia virus env sequence acquired from GenBank (accession number J01998).

Assessment of env and ATRX mRNA expression in murine tumor cells

Northern blot analysis was performed to determine whether the env and ATRX genes are actively transcribed in MC38 cells (Fig 3). Total RNA was isolated from MC38 cells and several other murine tumor cell lines. These included the C57BL/6-derived cell lines B16 (melanoma) and EL4 (lymphoma) as well as the BALB/c-derived colonic line CT26 and the mammary tumor cell lines 4T1 and 4T07. The mastocytoma cell line P815 from DBA/2 mice was also analyzed, as was the non-transformed myoblast cell line C2C12. Total RNA was also isolated from the normal colonic epithelium of a C57BL/6 mouse. The endogenous ecotropic env gene was implicated previously as a melanoma-specific Ag in B16 cells. High levels of env gene expression were...
detected in MC38, B16, CT26, and 4T07 cells (Fig 3A). Expression was also noted in 4T1 and EL4, with very low levels of expression in P815 cells. Expression of the proviral sequences was not detected in the myoblast line C2C12 or in normal colonic epithelium. Thus, although not expressed in normal cells, the ecotropic endogenous retrovirus is expressed in a variety of murine tumor cell lines, including both spontaneously arising tumors (B16, 4T1, and 4T07) and carcinogen-induced tumors (MC38, EL4, P815, and CT26). The ATRX gene was found to be expressed in all of the cell lines tested, as well as in normal colonic epithelium (Fig 3B). Expression was strongest in the tumor cell lines B16 and EL4.

Southern blot analysis

We subsequently investigated the genomic structure of the env-encoding proviral sequence in MC38 cells. Endogenous retroviruses may become activated as the result of a point mutation and remain single copy, or activation may be accompanied by amplification or rearrangement of the proviral sequence. C57BL/6 cells normally contain a single copy of the endogenous ecotropic proviral sequence, which resides on chromosome 8. To determine whether this MuLV proviral sequence was amplified and/or rearranged in MC38 cells, Southern blot analysis was performed. Genomic DNA from normal colon, MC38 cells, and B16 cells was digested with the restriction enzymes BamHI, HindIII, PstI, PvuII, and KpnI. Hybridization of the DNA with the ecotropic-specific env probe revealed the presence of novel fragments in the MC38 DNA; these fragments were not found in the normal DNA and in some cases were distinct from those of B16 DNA (Fig 4). This finding suggests that the MC38 proviral sequence has likely undergone amplification and reintegration into new genomic sites. Southern blot analysis of the ATRX gene revealed no apparent genomic rearrangements in MC38 or B16 cells compared with normal genomic DNA (data not shown).

Analysis of the env sequence

We chose to further study the env protein as a tumor Ag in this mouse model to determine the basis of its immunogenicity. To determine whether the env sequence expressed in MC38 cells represents a mutant or nonmutant tumor Ag, we sequenced the expressed env sequence and compared it with the published sequence, derived from the AKR mouse strain, and with the endogenous sequence in C57BL/6 genomic DNA. The full-length env cDNA was amplified from MC38 total RNA by PCR after reverse transcription. The normal sequence was amplified from genomic DNA extracted from a C57BL/6 mouse. Previously reported coding sequence differences between B16 env (also derived from a C57BL/6 mouse) and that of the AKV were either not found in the MC38 expressed sequence (nucleotides 6116, 6419, 7017, and 7085) or found to be the same in the MC38-derived env and the C57BL/6 genomic sequence. Thus the differences between the MC38 and AKR-derived sequences likely represent variations between the mouse strains. Also of note, as reported by others, the env gene expressed in MC38 cells has a 99-bp deletion in the 3' LTR compared with AKV; however, this change also appeared to be present in the C57BL/6 genomic sequences when size was examined by PCR (data not shown).

Polynucleotide immunization

As both a preliminary and rapid means of assessing the potential of the env polypeptide to act as an immunogenic tumor Ag, the 1.3-kb insert was rescued as phage DNA from the reactive plaque and used for polynucleotide immunization. Mice were immunized with the env-encoding DNA, and Ab production was subsequently measured. Intramuscular immunization of C57BL/6 mice with the nonmutant env sequence elicited
Figure 4. Southern blot analysis of the endogenous ecotropic retrovirus in C57BL/6 genomic DNA, MC38 genomic DNA, and B16 genomic DNA. A: Diagrammatic representation of restriction sites in the ecotropic endogenous proviral sequence. The location of the ecotropic-specific probe is indicated. B: Genomic DNA from C57BL/6 mouse colon (Nrl), MC38 cells, and B16 cells was digested with the indicated restriction enzymes and hybridized with the ecotropic-specific env probe. The arrows indicate the location of the endogenous proviral sequence in normal C57BL/6 genomic DNA.

A strong, specific anti-env Ab response in all immunized mice (Fig 5). By contrast, animals immunized with the vector alone exhibited no reactivity with the env protein. Isotype analysis of the anti-env Ab response revealed the presence of several isotypes, including IgG1, IgG2a, and IgG2b, suggesting the presence of both Th1 and Th2 type responses.

DISCUSSION

A limited number of murine tumor Ags have been described to date, and the ability of these Ags to elicit effective antitumoral immunity is currently an area of active investigation. Although prospects for the development of immunotherapeutic modalities have recently been improved by advances in the field of immunology, knowledge of the spectrum of tumor Ags important in mediating immune interactions is needed. In addition, it is important to catalog the nature of murine tumor Ags, such that a comparison with human cancers can be explored and more appropriate animal models can be developed for evaluating immunotherapeutic approaches to cancer. We have used a strategy for tumor Ag identification that exploits the humoral immune responses that accompany the induction of antitumoral immunity and have identified the MuLV endogenous ecotropic env gene-encoded protein and the ATRX protein as candidate tumor Ags in MC38 colon adenocarcinoma cells.

The ATRX protein is expressed in a wide variety of normal tissues in mice and humans. This protein contains highly conserved domains, which classify it as a member of the helicase/adenosine triphosphatase superfamily. It thought to be a nuclear protein involved in the regulation of gene expression. In humans, a deficiency in this protein is associated with a severe mental retardation syndrome (ATR-X syndrome) which includes α-thalassemia, urogenital abnormalities, and a characteristic facial appearance. A role for ATRX in cancer has not yet been described. Northern blot analysis demonstrates that this gene is expressed to a variable degree in all murine tumor lines tested. No mutations were identified in the partial cDNA isolated, and additional studies are underway to determine the basis of this protein's immunogenicity as well as to evaluate the potential of ATRX to serve as a tumor Ag.

More is known about the role of the env protein as a potential tumor Ag. This protein is encoded by one of the numerous endogenous retroviral sequences present.
in the normal mouse genome. Endogenous retroviruses are relatively stable elements that are present in multiple copies throughout the genome and inherited in a Mendelian fashion. C57BL/6 mice carry a single copy of an endogenous ecotropic virus, and it is defective and transcriptionally silent in normal tissues. Activation of endogenous retroviruses spontaneously or after exposure to carcinogens has been described in several mouse strains. Activation may occur by several mechanisms, including point mutation, transcomplementation or recombination with other endogenous retroviruses, or by amplification and rearrangement of the locus. Here, activation of env expression in MC38 cells is associated with the appearance of novel bands on Southern blot analysis, suggesting that amplification and reintegration events are likely to have occurred. The exact nature of the activating mutation(s) will require further study.

Although the env protein was identified in this study on the basis of humoral immunity, it has been determined to be a target of CTL activity in both C57BL/6 mice and BALB/c mice. The identification of a CTL-activating protein by immunoscreening supports the use of Ab-based screening for the identification of relevant tumor Ags. Further, although most murine tumor Ags are thought to be unique to a particular tumor, our findings suggest that env is expressed in several murine tumors. This Ag is expressed in both spontaneous and mutagen-induced tumor cell lines derived from mice of different genetic backgrounds and from a variety of tissue types (Fig 3A). Sequence analysis revealed no apparent differences between the sequences expressed in the MC38 cells and the genomic sequences of the env gene, suggesting that this Ag is a true “self” Ag. Thus, env is immunogenic based on its expression in the tumor. Polynucleotide immunization demonstrated that this protein is capable of acting as an immunogen in C57BL/6 mice. A specific IgG Ab response was elicited in all immunized mice. Interestingly, this Ag may also have relevance to human cancer. The human homologs of the env gene, contained in human endogenous retroviral elements (HERVs), may also act as tumor Ags. HERVs are also widely dispersed throughout the human genome. Unlike mice, however, expression of a few of these proviral sequences has been reported in some normal human tissues, most notably placenta. HERV expression has also been noted in a variety of tumor cell lines. Recently, Abs to the HERVK10 env sequence were reported to be present in a large percentage of patients with seminoma. These attributes may make this tumor Ag an ideal target for additional studies relevant to tumor vaccinology.

In summary, application of SEREX to mouse models of carcinoma offers a comparatively rapid means of
identifying putative tumor Ags, which can then be evaluated for utility in gene therapy approaches to cancer immunotherapy. The development of more accurate preclinical models for the evaluation of improved vaccination strategies is one important goal of such studies. This approach may also be important for expanding known human tumor Ags through the identification of murine homologs.

ACKNOWLEDGMENTS

We thank Lucretia Sumerel and Joyce Pike for expert technical expertise. The research described herein was sponsored by the U.S. Army Medical Research and Material Command, Department of The Army Award Numbers DAMD17-97-1-7243 (to T.V.S.) and DAMD17-97-1-7074 (to T.A.H.); and by R01CA71386 (to R.M.C.).

REFERENCES

MEMORANDUM FOR Administrator, Defense Technical Information Center (DTIC-OCA), 8725 John J. Kingman Road, Fort Belvoir, VA 22060-6218

SUBJECT: Request Change in Distribution Statement

1. The U.S. Army Medical Research and Materiel Command has reexamined the need for the limitation assigned to technical reports written for this Command. Request the limited distribution statement for the enclosed accession numbers be changed to "Approved for public release; distribution unlimited." These reports should be released to the National Technical Information Service.

2. Point of contact for this request is Ms. Kristin Morrow at DSN 343-7327 or by e-mail at Kristin.Morrow@det.amedd.army.mil.

FOR THE COMMANDER:

Encl

PHYLIS M. RINEHART
Deputy Chief of Staff for Information Management