UNCLASSIFIED

AD NUMBER

ADB256677

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov’t. agencies only; Proprietary Info; Oct 99
Other requests shall be referred to
USAMRMC, Ft Detrick, MD 21702- 5012

AUTHORITY

USAMRMC ltr, 26 Aug 2002

THIS PAGE IS UNCLASSIFIED
Award Number: DAMD17-95-1-5054

TITLE: Risk Factors for Chorioamnion Infection and Adverse Pregnancy Outcome Among Active-Duty Military Women and Dependent Women

PRINCIPAL INVESTIGATOR: Gail H. Cassell, Ph.D.

CONTRACTING ORGANIZATION: The University of Alabama at Birmingham
Birmingham, Alabama 35294-0111

REPORT DATE: October 1999

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Distribution authorized to U.S. Government agencies only (proprietary information, Oct 99). Other requests for this document shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702-5012.

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE U.S. GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

LIMITED RIGHTS LEGEND

Award Number: DAMD17-95-1-5054
Organization: The University of Alabama at Birmingham

Those portions of the technical data contained in this report marked as limited rights data shall not, without the written permission of the above contractor, be (a) released or disclosed outside the government, (b) used by the Government for manufacture or, in the case of computer software documentation, for preparing the same or similar computer software, or (c) used by a party other than the Government, except that the Government may release or disclose technical data to persons outside the Government, or permit the use of technical data by such persons, if (i) such release, disclosure, or use is necessary for emergency repair or overhaul or (ii) is a release or disclosure of technical data (other than detailed manufacturing or process data) to, or use of such data by, a foreign government that is in the interest of the Government and is required for evaluational or informational purposes, provided in either case that such release, disclosure, or use is made subject to a prohibition that the person to whom the data is released or disclosed may not further use, release or disclose such data, and the contractor or subcontractor or subcontractor asserting the restriction is notified of such release, disclosure, or use. This legend, together with the indications of the portions of this data which are subject to such limitations, shall be included on any reproduction hereof which includes any part of the portions subject to such limitations.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

__ __

__ __
Risk Factors for Chorioamnion Infection and Adverse Pregnancy Outcome Among Active-Duty Military Women and Dependent Women

Cervicovaginal ureaplasmal infection alone is not predictive of preterm birth. Only a subpopulation of women infected in the lower genital tract are at risk for chorioamnion invasion and premature birth. The major goal of the proposed study is to identify microbiologic factors that predispose to and/or predict chorioamnion invasion and premature birth. This study will determine if the presence of bacterial vaginosis (BV) is a risk factor for ureaplasmal invasion of the chorioamnion. 4,312 women have been enrolled to date. Vaginal cultures from all of these women have been assessed for Ureaplasma urealyticum (UU) colonization and a subset of gram stains have been assessed for BV. Prenatal screens yield 2,497/4,193 or 60% culturally positive for UU and 486/2,700 or 18% of the gram stains are positive for BV. At delivery, (705 women meeting study criteria for placental cultures including multiple births), the isolation rate of UU from the vagina is 61% regardless of delivery route. The isolation rate of UU from placental tissues is 14%. The rate of BV at delivery is approximately 18%. The correlation of this data may help us better understand adverse pregnancy outcome including preterm birth as it relates to infection of the chorioamnion.
Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

N/A In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

X For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

N/A In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

N/A In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

N/A In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.

[Signature]

[Signature] Date
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF 298</td>
<td>2</td>
</tr>
<tr>
<td>FOREWORD</td>
<td>3</td>
</tr>
<tr>
<td>LETTER OF REQUEST</td>
<td>4</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>5</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>6</td>
</tr>
<tr>
<td>BODY</td>
<td>6</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>10</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>11</td>
</tr>
<tr>
<td>APPENDIX I</td>
<td>13</td>
</tr>
<tr>
<td>APPENDIX II</td>
<td>18</td>
</tr>
</tbody>
</table>
INTRODUCTION:

Women are playing increasing roles in active duty military service and suffering unexplained adverse outcomes of pregnancy. In the Navy, up to 20% of enlisted women become pregnant each year and nearly 15% of these pregnancies suffer adverse effects. The percentage is in excess of that experienced in most other U.S. female populations and despite a number of preliminary investigations, the difference does not appear to be related to environmental exposures.

Some of the traditional factors associated with adverse outcomes of pregnancy such as limited access to prenatal care or poor nutritional status are not operative among naval personnel, nonetheless at least 10% of Navy live births are premature (< 37 weeks gestation) or low birth weight. In addition, previous studies have indicated among pregnant, enlisted women, spontaneous abortions occur in 9.9%, 2.7% of pregnancies are ectopic and 1.5% result in fetal death (0.7% early and 0.8% late). Bacterial infections of the lower genital tract may in part explain poor pregnancy outcome.

Preterm birth complicates 8-10% of all pregnancies in the U. S. and is the leading cause of infant morbidity and mortality in the U.S. We have previously shown that *Ureaplasma urealyticum* (*Uu*) is the single most common microorganism isolated from the chorioamnion of women in spontaneous labor with intact membranes and in whom there are no chances for cervicovaginal contamination of the placenta (i.e. they delivered by cesarean section with intact membranes). Furthermore, ureaplastmal infection of the chorioamnion in the absence of other bacteria was associated with birth < 37 weeks even after multifactorial analysis to adjust for labor and other obstetric and demographic factors that could confound the association. Infection was inversely related to gestational age and birth weight. Other related studies indicate that ureaplasmal infection is a significant cause of respiratory disease, meningitis and death in very low birth weight infants.

The major goal of the proposed study is to define those women who are at risk for adverse pregnancy outcomes and to determine whether chorioamnion infection, in particular infection with *Uu*, is associated with these outcomes, specifically premature birth. This will allow us to identify factors that may predict invasion and premature birth. We will determine if the presence of BV is a risk factor for ureaplasmal invasion of the chorioamnion. Potential confounders of these data will be controlled through multivariate analyses. They include the presence of other sexually transmitted pathogens, in particular *Chlamydia trachomatis, Neisseria gonorrhoeae, Group B streptococci, Trichomonas vaginalis, Mycoplasma hominis, and Mycoplasma genitalium*.

BODY:

Experimental methods to be used in this study are identical to those detailed in the original proposal. Since our report last year, we have enrolled an additional 848 patients for a total of 4,312. Our enrollment rate remained about the same as it had been in previous years (61%). Enrollment ended on April 30, 1999. The study population consists of all consenting women presenting at the Naval Medical Center San Diego (NMCSD) for their prenatal visit. These women were screened for BV and *U. urealyticum* at this visit. Women completing the study with cultures at delivery belonged to one of the following categories: all women delivering by cesarean
section with either intact or ruptured membranes, 100 randomly selected vaginal deliveries and all women delivering preterm < 37 weeks gestational age. A flowchart describing the study population is found in Figure 1, Appendix I.

Demographics of the enrollees (those attending NMCSD Obstetrics clinic for their first pre-natal visit) and consenting to participate in the UAB Study are demonstrated below:

<table>
<thead>
<tr>
<th>Age Range</th>
<th>N</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Race</th>
<th>N</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>2337</td>
<td>(54.5)</td>
</tr>
<tr>
<td>Asian/PI</td>
<td>562</td>
<td>(13.1)</td>
</tr>
<tr>
<td>Black</td>
<td>578</td>
<td>(13.5)</td>
</tr>
<tr>
<td>Spanish/Hispanic</td>
<td>575</td>
<td>(13.4)</td>
</tr>
<tr>
<td>Other</td>
<td>162</td>
<td>(3.8)</td>
</tr>
<tr>
<td>Eskimo/Aleut./American Indian</td>
<td>43</td>
<td>(1.0)</td>
</tr>
<tr>
<td>Multiplerace</td>
<td>28</td>
<td>(0.7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Military Status</th>
<th>N</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navy</td>
<td>782</td>
<td>(19.9)</td>
</tr>
<tr>
<td>Retired Military</td>
<td>29</td>
<td>(0.7)</td>
</tr>
<tr>
<td>Marine</td>
<td>64</td>
<td>(1.6)</td>
</tr>
<tr>
<td>Reserve</td>
<td>36</td>
<td>(0.9)</td>
</tr>
<tr>
<td>Army</td>
<td>6</td>
<td>(0.2)</td>
</tr>
<tr>
<td>Public Health</td>
<td>1</td>
<td>(0.1)</td>
</tr>
<tr>
<td>National Guard</td>
<td>3</td>
<td>(0.1)</td>
</tr>
<tr>
<td>Civilian</td>
<td>3006</td>
<td>(76.5)</td>
</tr>
</tbody>
</table>

Of the 4,312 women that have enrolled in the UAB study and whose outcome data have been analyzed, 2,700 have slides that were analyzed for BV by the Nugent Gram Stain method. Our BV rate of positivity (a score of \(\geq 7 \)) continues to be 18%. Trichomonas has been isolated from 36 patients (0.8%). These continue to be consistent with previous year’s reports. \(U. urealyticum \) (\(Uu \)) has been isolated from 2,497/4,193 (60%) and Mycoplasma species (\(Myco \) sp.) has been isolated from 437/4,193 (10%). Speciation of the mycoplasma isolates is yet to be performed. Most of these isolates will probably speciate as \(M. hominis \). Any organism that is negative for \(M. hominis \) will be tested further for its identification.

This study has afforded us the opportunity to follow a large cohort of women as to their delivery outcome. In addition to the women that meet our study criteria and have their placentas, etc. submitted for culture workup, we have collected outcome data on the delivery status of all women that have enrolled in the UAB study at their prenatal visit. This information has been crucial in determining the overall pregnancy outcomes for this population. The outcomes of those deliveries are summarized in Table 2. Flowcharts describing the types of delivery of this patient population at the NMCSD are found in Figures 2, 3, and 4 in Appendix I.
Data as of 5/24/99
This represents 2,780 of the 4,312 enrolled
Others yet to be delivered and/or data analyzed

Table 2
Pregnancy Outcome of Entire Study Population
N=2780

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Term Deliveries > 37 weeks gestation</td>
<td>2221</td>
</tr>
<tr>
<td>Preterm Deliveries 25-36 weeks gestation</td>
<td>225</td>
</tr>
<tr>
<td>IUFD</td>
<td>25</td>
</tr>
<tr>
<td>SAB</td>
<td>293</td>
</tr>
<tr>
<td>Abortion/TAB</td>
<td>16</td>
</tr>
</tbody>
</table>

The total bacterial analysis for cultures performed at delivery is not complete. However, we have analyzed the cultural status (ureaplasma and mycoplasma) of 705 women at delivery. The results are as follows:

Vaginal (n=664)
- Cultured at the time of delivery: [Details]
- Cultures positive for both organisms (U. urealyticum and M. hominis): [Details]

Placental tissue (n=705)
- Cultures positive for both organisms (U. urealyticum and M. hominis): [Details]

Amniotic Fluid (n=133)
- Cultures positive for both organisms (U. urealyticum and M. hominis): [Details]

Infant Nasal (n=691)
- Cultures positive for both organisms (U. urealyticum and M. hominis): [Details]
During year 04, we have had two interesting cases to report of women with adverse pregnancy outcomes.

Patient 1

<table>
<thead>
<tr>
<th>Maternal Age</th>
<th>21 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military Status</td>
<td>Dependent Spouse</td>
</tr>
<tr>
<td>Delivery route</td>
<td>Vaginal</td>
</tr>
<tr>
<td>Complication of pregnancy</td>
<td>PPROM (Preterm premature rupture of membranes)</td>
</tr>
<tr>
<td>Gestational age</td>
<td>18 weeks</td>
</tr>
<tr>
<td>Infant Outcome</td>
<td>IUFD (Intra-uterine fetal demise)</td>
</tr>
<tr>
<td>Placental pathology</td>
<td>Chorioamnionitis and funicitis</td>
</tr>
<tr>
<td>Placenta culture results</td>
<td>Ureaplasma urealyticum, Prevotella bivia</td>
</tr>
<tr>
<td>Autopsy culture results</td>
<td></td>
</tr>
<tr>
<td>Brain tissue</td>
<td>Ureaplasma urealyticum, Prevotella bivia</td>
</tr>
<tr>
<td>Liver tissue</td>
<td>Ureaplasma urealyticum, Prevotella bivia, Peptostreptococcus anaerobius</td>
</tr>
<tr>
<td>Lung tissue</td>
<td>Ureaplasma urealyticum, Gardnerella vaginalis, Escherichia coli</td>
</tr>
<tr>
<td>Cord blood</td>
<td>Ureaplasma urealyticum, Gardnerella vaginalis, Peptostreptococcus anaerobius, Peptostreptococcus magnus</td>
</tr>
</tbody>
</table>

Patient 2

<table>
<thead>
<tr>
<th>Maternal Age</th>
<th>22 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military Status</td>
<td>Active duty</td>
</tr>
<tr>
<td>Delivery route</td>
<td>Cesarean section with membranes intact</td>
</tr>
<tr>
<td>Complication of pregnancy</td>
<td>Decreased fetal movement</td>
</tr>
<tr>
<td>Gestational age</td>
<td>33 weeks</td>
</tr>
<tr>
<td>Infant Outcome</td>
<td>Mild Respiratory distress syndrome (RDS)</td>
</tr>
<tr>
<td>Endotracheal aspirate culture results</td>
<td>Listeria monocytogenes</td>
</tr>
<tr>
<td>Placental culture results</td>
<td>Listeria monocytogenes</td>
</tr>
</tbody>
</table>

Baby admitted to neonatal intensive care unit and intubated for 2 days. Treated with ampicillin for 10 days then sent home. Mom treated with two doses of ampicillin intrapartum and was discharged post op on day 2.

In May, a poster was presented at the 99th General Meeting of the American Society for Microbiology in Chicago, IL entitled "*Ureaplasma urealyticum* is the Most Common Organism Isolated from Cord Blood". A copy of the poster is included in Appendix II. Data for this presentation was obtained from results from a subgroup of this study population. When the culture of cord blood was added to the study protocol, it became evident that *U. urealyticum* was the most common organism detected by culture. We were very interested in seeing how this correlated with poor infant outcome. Further studies are required.
CONCLUSION:

As you are aware, a no-cost extension was requested and awarded for this study. This was necessary to follow the last enrollees to term and to have adequate time for data analysis. Enrollment ended on April 30, 1999. Since that time, we have been following the deliveries of study participants. The last enrollee's estimated date of delivery is 1/3/2000. Recently, we have begun analyzing demographic data of the NMCSD population ensuring that it is comparable to that of our study population. Data being looked at includes the detection rates of *Neisseria gonorrhoeae* and *Chlamydia trachomatis*, marital status, age, race, and parity. Analysis of the study data will begin in February of 2000 after the final culture results and chart reviews have been completed.
REFERENCES:

APPENDIX I
Figure 1
ENTIRE STUDY POPULATION

- ENROLLED AT PRENATAL REGISTRATION
 - OUTCOME
 - UNKNOWN
 - TRANSFER OUT
 - DISENROLL
 - LOST TO SYSTEM
 - KNOWN
 - DISCONTINUED PREGNANCY
 - MISCARRIAGE
 - TAB
 - SAB
 - DELIVERED
 - C-SECTION ALL PROCESSED
 - VAGINAL 100/ YEAR
 - ALL PRETERM <35 WEEK GESTATIONAL AGE
 - ALL PROCESSED
Figure 2

TOTAL DELIVERIES
DELIVERY TYPE BREAKDOWN OF ENTIRE STUDY POPULATION

SINGLETONS
n=2440

VAGINAL
n=2103

C-SECT RUPTURED
n=195

C-SECT INTACT
n=142

AS OF 5/24/99
TOTAL DELIVERIES
PRETERM BREAKDOWN < 37 WEEKS OF ENTIRE STUDY POPULATION

INFANTS DELIVERED n=2430*

VAGINAL n=2092

C-SECT RUPT n=193

C-SECT INTACT n=145

PRETERM n=218

TERM n=1852

IUFD n=22

PRETERM n=18

TERM n=174

IUFD n=1

PRETERM n=25

TERM n=119

IUFD n=1

5/24/99 * 10 gestational ages missing
Figure 4

DELIVERY STATUS OF WOMEN MEETING PLACENTAL CULTURE CRITERIA

AS OF 5/24/99

SINGLETON BIRTHS n=542

C-SECT INTACT n=127

C-SECT RUPT n=172

PRETERM n=14

PRETERM n=15

VAGINAL n=243

TERM n=113

TERM n=157

TERM n=186

PRETERM n=57
APPENDIX II
Ureaplasma urealyticum is the Most Common Organism Isolated from Cord Blood

L.B. Duffy¹, P.D. Stamper², M.P. Berzins², M.J. McCaffrey², G.C. Gray³, and G.H. Cassell⁴

¹University of Alabama at Birmingham, Birmingham, AL; ²Naval Medical Center San Diego, San Diego, CA; ³Naval Health Research Center, San Diego, CA; ⁴Lilly Research Laboratories, Indianapolis, IN.
ABSTRACT/INTRODUCTION

Ureaplasma urealyticum (Uu) is not routinely sought when evaluating neonates for early onset sepsis. *Uu* is a commensal organism of the lower genital tract of females and in a subpopulation of women it can invade the upper genital tract and potentially become a pathogen. In this subpopulation, *Uu* is a significant cause of chorioamnionitis and is associated with preterm birth and neonatal morbidity and mortality. Cord bloods were cultured within an hour of delivery, as part of an ongoing study to evaluate the potential effect of *Uu* chorioamnionitis on adverse pregnancy outcome.

One hundred eighty cord bloods have been analyzed for *Uu* and other bacteria. 76/180 specimens (42%) were positive for one or more microorganisms. *Uu* was isolated from 42/76 (55%), 24 of 42 (57%) were in pure culture. The next most common single organism isolated was E. coli (9/76 or 12%). Mycoplasma species was isolated from only one cord blood and this was cultured in conjunction with *Uu*. The other most commonly isolated microorganisms were as follows: *Lactobacillus sp.* (7), *Gardnerella vaginalis* (8), *Propionibacterium sp.* (5), and *Eubacterium lentum* (6). *Uu* is the most frequently isolated microorganism from the cord blood. Increasingly, cord blood is being used for autologous transfusions in premature infants and for unrelated donor hematopoietic stem cell transplantation without
Uu and *Mycoplasma sp.* screening. The neonatal outcomes associated with Uu accentuates the need to assess the clinical significance of our findings.
METHODS

The study population included those women presenting for their first prenatal visit at the Naval Medical Center, San Diego, CA and who subsequently met study criteria and were followed at delivery. Study participants included both active duty and dependent pregnant women. This population was chosen because confounding risk factors such as occupational exposures, economic status and access to health care are well controlled for, thus making them an ideal study population. Age of study participants ranged from 14 to 46 years with a mean age of 25.6 years. 84.4% of the women were married. The military status of this population included 19.9% on active duty, 70.5% non-active duty (dependents), and 9.6% reservists. The ethnic background of the study population was 54.5% Caucasian, 14.5% Asian, 13.4% Hispanic, 13.1% African American, and 4.5% other.
Placental Cultures:

Placentas were collected immediately at delivery, placed in sterile plastic zip-lock bags, and were processed within one hour of delivery. Great care was taken to reduce the chance of contamination in the culturing of placental tissues. Processing took place in a biosafety cabinet. Placentas were placed on a sterile surface and using sterile gloves examined for anatomical malformations or lesions suggestive of infection. Using aseptic technique, incisions were made on the fetal surface of the placenta and the amnion was separated from the chorion using sterile surgical instruments. Membrane specimens were obtained by swabbing the interface between the chorion and the amnion. Three sites from the chorioamnion were sampled with priority given to areas where abnormalities were present. The chorioamnion swabs were inoculated into 3.0 ml of sucrose phosphate buffer with 10% fetal calf serum (2SP). Half of the inoculum (1.5ml) was cultured on aerobic media and ureaplasma transport media while the remaining 1.5ml was transported to the anaerobic chamber for further processing.

The placental tissue (at least 3 sites sampled) was collected with sterile forceps and scissors and placed into a sterile petri dish containing 3.0 ml of 2SP for aerobic cultures. Half of the placental tissue sampled was placed into pre-reduced medium for transport to
an anaerobic chamber. Further, the aerobic processing of the placental tissue included the mincing of tissues with sterile scissors and inoculation of this tissue suspension into the appropriate media for culture of aerobic bacteria including transport media for ureaplasma and mycoplasma. The media used for aerobic culture of the chorioamnion interface and placental tissue included Becton Dickinson’s Trypticase Soy Agar with 10% Sheep Blood, V Agar, and Chocolate II Agar with Hemoglobin & IsoVitaleX. Also, a Chocolate II Agar with Hemoglobin & IsoVitaleX was inoculated from the chorioamnion inoculum and placental tissue suspension to be incubated in a reduced oxygen atmosphere (10% CO₂, 5% O₂, 85% N₂). Anaerobic cultures were processed in an anaerobic chamber, Bactron II. The placental tissue from the anaerobic transport media was aseptically processed by mincing with sterile instruments in 3 ml of 2SP. The 2SP from the chorioamnion inoculum and the placental tissue suspension were plated to the appropriate medias for culture of anaerobic bacteria. The anaerobic media onto which the specimens were plated was Pre-Reduced Anaerobically Sterilized Bacteroides Bile Esculin Agar, Brucella Blood Agar with Vitamin K & Hemin, Brucella Laked Blood Kanamycin Vancomycin, Phenylethyl Alcohol Blood Agar, and inoculated Thioglycolate Medium with Hemin, Vitamin K & Calcium Carbonate from Anaerobe Systems.
Aerobic cultures were incubated at 36.5°C in 7% CO₂, and checked daily for five days. Anaerobic cultures were incubated at 36.5°C for seven days. The reduced oxygen culture was incubated at 36.5°C and checked on day three and day seven. At day seven, no growth reduced oxygen cultures and anaerobic cultures were discarded. Negative cultures were blind passed aerobically to Chocolate II Agar with Hemoglobin & IsoVitaleX and anaerobically to CDC Anaerobic Blood Agar from the Thioglycolate Medium on the fifth day to detect any microorganisms which failed to grow on the original plates. All bacteria were isolated and identified using standard biochemical or enzymatic tests.
Mycoplasma cultures were frozen at \(-70^\circ\text{C}\) and were shipped on dry ice to the Diagnostic Mycoplasma Laboratory monthly. Once the specimens were thawed, serial dilutions were made in 10 B and SP4 broth. 20 µl aliquots of the original specimen and of each aliquot were plated on the appropriate agar (A8 for 10 B and SP4 for SP4). Organisms routinely sought were \(U.\) urealyticum, \(M.\) hominis, and \(M.\) genitalium. Broths were incubated at 37\(^\circ\text{C}\) in room air (14 days for 10 B and 6 weeks for SP4). Broths were read daily for detection of a color change. Plates were incubated at 37\(^\circ\text{C}\) in 5\% CO\(_2\) (14 days for A8 and 6 weeks for SP4). Plates were read three times each week prior to being reported out as negative. Negative SP4 broth cultures were blind passed (broth to agar inoculation) between days 10 to 21 to increase the chance of isolating \(M.\) genitalium.
Cord Blood:

Cord blood was collected most often in labor and delivery and was collected from the umbilical vein after the cord had been clamped and cut. The cord blood was drained into a large syringe and placed into a vacutainer tube and sent for culture. The remaining cord blood was submitted for routine blood analysis. In the event the cord blood was not collected at the time of delivery, the cord was disinfected in the biosafety cabinet in the study laboratory by wiping with 70% alcohol. A syringe was used to collect the blood from a vein through the outside wall of the cord. 0.5 ml of cord blood was inoculated into 10B broth (1:6 dilution) for the detection of ureaplasma and mycoplasma. Serial dilutions were made in 10 B broth. 20 µl aliquots of the original specimen and of each aliquot were plated onto A8 agar. The 10 B cultures were monitored daily for a color change and agar plates read daily for colonial confirmation. For the detection of aerobes and anaerobes, 0.5 ml of cord blood was also inoculated into Thioglycolate Medium with Hemin, Vitamin K & Calcium Carbonate (1:14 dilution). The Thioglycolate broth was examined daily and negatives were blind passed aerobically and anaerobically on the fifth day. All bacteria isolated were identified by standard biochemical or enzymatic tests.
RESULTS

To date, we have analyzed 180 cord blood specimens for bacterial infection. The most common organisms isolated from those specimens are found in Table 1. 76/180 (42%) were culturally positive for one or more bacterial species. Of those, 42/76 (55%) were positive for *U. urealyticum* (Figure 1). Many of the organisms isolated from these sites could be considered vaginal contaminants. However, finding them in pure culture argues against that fact. *Uu* was detected in pure culture in 24/76 (32%) of all positive cord blood cultures. Other organisms isolated in pure culture from the cord blood were *E. coli* (2), *G. vaginalis* (2), *Lactobacillus* (1), *E. lentum* (1), *Peptostreptococcus* sp. (3), and *Bacteroides/Prevotella* sp. (6) and *Propionibacterium* sp. (5).
Knowing that bacterial infections have been associated with adverse pregnancy outcomes, we were especially interested in the outcomes of those mothers and infants whose cord blood were culturally positive. Outcomes selected (Table 2) are those generally thought to be associated with bacterial infections. The infants with one or more microorganisms cultured from cord blood are significantly associated with adverse pregnancy outcome ($p=0.038$) when analyzed by chi2 (95%CI). None of the thirty-six bacterial species identified were associated significantly when compared individually to adverse pregnancy outcomes. However, even considering the small sample size ($n=180$) and the use of basic analysis without controlling for confounders, there was a positive trend with respect to Uu isolation.

When comparing the cultural data from the cord bloods with that of the corresponding placental tissue, Uu was again the most common organism isolated from both sites (Table 3). When at least one organism isolated from the cord blood was also isolated from the corresponding placenta and adverse outcomes were assessed, the infants were at increased risk for adverse outcomes ($p=0.022$). (Figure 4).
CONCLUSION

Given the frequency with which *Uu* occurs in cord blood and placental tissue and the potential risks, there is need to assess the clinical significance of our findings. Because cord blood is increasingly being used in premature infants for autologous transfusions and for unrelated donor hematopoietic stem cell transplantation and ureaplasmas and mycoplasmas are not included in the screening process, the need for additional studies is all the more urgent.
Table 1

Most Common Organisms Found in Cord Blood

<table>
<thead>
<tr>
<th>Organism</th>
<th>Total including Other Bacteria</th>
<th>Alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ureaplasma urealyticum</td>
<td>42/76*</td>
<td>24/76</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>9/76</td>
<td>2/76</td>
</tr>
<tr>
<td>Gardnerella vaginalis</td>
<td>8/76</td>
<td>2/76</td>
</tr>
<tr>
<td>Lactobacillus</td>
<td>7/76</td>
<td>1/76</td>
</tr>
<tr>
<td>Eubacterium lentum</td>
<td>6/76</td>
<td>1/76</td>
</tr>
<tr>
<td>Bacteroides/Prevotella species</td>
<td>18/76</td>
<td>6/76</td>
</tr>
<tr>
<td>Peptostreptococcus species</td>
<td>6/76</td>
<td>3/76</td>
</tr>
<tr>
<td>Propionibacterium species</td>
<td>5/76</td>
<td>5/76</td>
</tr>
</tbody>
</table>

*This number includes those cultures that had Uu alone
Table 2

ADVERSE INFANT OUTCOMES USED IN ANALYSIS

RULE OUT SEPSIS
RESPIRATORY DISTRESS SYNDROME
TEMPORARY TRANSIENT TACHYPNIA
NEONATAL DEATH
PREMATURE PROLONGED RUPTURE OF MEMBRANES
INTRAUTERINE FETAL DEMISE
CHRONIC LUNG DISEASE
INFANT PNEUMONIA
SMALL GESTATIONAL AGE
CLINICAL CHORIOAMNIONITIS
POST PARTUM ENDOMETRITIS
Table 3

Common Cord Blood Isolates Also Found in Placental Tissues

<table>
<thead>
<tr>
<th>Organism</th>
<th>Number of Cord Positive</th>
<th>Corresponding Placenta Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ureaplasma urealyticum</td>
<td>42</td>
<td>16</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Gardnerella vaginalis</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Lactobacillus</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Eubacterium lentum</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Bacteroides/Prevotella species</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>Peptostreptococcus species</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Propionibacterium species</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
BACTERIAL RESULTS OF 180 CORD BLOODS

- Negative: 57.8%
- Any Positive: 42.2%
- Uu Plus Bacteria: 23.7%
- Uu Alone: 31.6%
- Other Bacteria: 44.7%
Figure 2
Cord Blood Culture Results in Relation to Adverse Infant Outcomes

- Uu Culture Positive
- Bacteria Only Culture Positive
- Culturally Negative
Adverse Infant Outcomes in Relation to Cord Blood Culture Results

- Normal Outcomes: 58.9%
- Adverse Outcomes: 41.1%
- Uu Alone: 14.9%
- Bacteria alone: 18.4%
- Uu Plus Bacteria: 25.3%
- Culture Negative: 41.4%
Figure 4

Cord Blood Culture and Corresponding Placenta Culture Results in Relationship to Adverse Infant Outcome

[Graph showing percentage distribution with labels: Uu Culture Positive, Bacteria Only Culture Positive, Culturally Negative]
MEMORANDUM FOR Administrator, Defense Technical Information Center (DTIC-OCA), 8725 John J. Kingman Road, Fort Belvoir, VA 22060-6218

SUBJECT: Request Change in Distribution Statement

1. The U.S. Army Medical Research and Materiel Command has reexamined the need for the limitation assigned to technical reports written for this Command. Request the limited distribution statement for the enclosed accession numbers be changed to "Approved for public release; distribution unlimited." These reports should be released to the National Technical Information Service.

2. Point of contact for this request is Ms. Kristin Morrow at DSN 343-7327 or by e-mail at Kristin.Morrow@det.amedd.army.mil.

FOR THE COMMANDER:

Encl

PHYLIS M. RINEHART
Deputy Chief of Staff for Information Management