NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies only; test and evaluation; Feb 1978. Other requests shall be referred to Director, Chemical Systems Laboratory, Attn: DRDAR-CLJ-R, Aberdeen Proving Ground, Maryland 21010.

AUTHORITY
USAARDC ltr, 9 Mar 1979
PARAMETRIC STUDIES OF PYROTECHNIC MATERIALS
BY BOMB CALORIMETRY

by

F. L. McIntyre
G. L. McKown

February 1978

NASA NATIONAL SPACE TECHNOLOGY LABORATORIES
Computer Sciences Corporation
Engineering and Science Services Laboratory
NSTL Station, Mississippi 39529

Contract No. NAS13-50

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
Chemical Systems Laboratory
Aberdeen Proving Ground, Maryland 21010

Distribution limited to US Government agencies only because of test and evaluation; February 1978. Other requests for this document must be referred to Director Chemical Systems Laboratory, Attn: DRDAR-CLJ-R, Aberdeen Proving Ground, MD 21010.
Disclaimer

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.
PARAMETRIC STUDIES OF PYROTECHNIC MATERIALS BY BOMB CALORIMETRY

F. L. McIntyre
G. L. Mckown

PERFORMING ORGANIZATION NAME AND ADDRESS
NASA National Space Technology Laboratories
Computer Sciences Corporation
Engineering and Science Services Laboratory
NSTC Station, Mississippi 38529

REPORT PREPARED FOR

ASET

CONTRACT OR GRANT NUMBER(S)
NAS13-59

REPORT DATE
Feb 1978

MONITORING AGENCY NAME AND ADDRESS (IF DIFFERENT FROM CONTROLLING OFFICE)
Director, Chemical Systems Laboratory
Attn: DRDAR-CLJ-R
Aberdeen Proving Ground, MD 21010

DISTRIBUTION STATEMENT (OF REPORT)
Distribution limited to U.S. Government agencies only because of test and evaluation; February 1978. Other requests for this document must be referred to Director, Chemical Systems Laboratory, Attn: DRDAR-CLJ-R, Aberdeen Proving Ground, Maryland 21010.

DISTRIBUTION STATEMENT (OF ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT)

SUPPLEMENTARY NOTES

KEY WORDS (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)
Calorimetry
Pyrotechnics
Colored Smoke Mixes

ABSTRACT (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)
A series of tests were performed in a large bomb calorimeter using four sulfur-based colored-smoke compositions. It was found that (1) energy output increases with decreasing sample density, (2) violet smoke is more energetic than the other colored-smoke mixes, and (3) the energy output increases significantly with increased ambient pressure.
PREFACE

The investigation described in this report was authorized under MIPR 8166104601F4W5, Project 5761313. This work was performed at the NASA National Space Technology Laboratories (NSTL) under the direction of the ARACOM Resident Operations Officer through NASA by the Computer Sciences Corporation as the support contractor. The experimental work was completed April 1977. (It was started in February 1976.)

Reproduction of this document in whole or in part is prohibited except with permission of the Director, Chemical Systems Laboratory, Attn: DRSAR-CLJ-R, Aberdeen Proving Ground, Maryland, 21010; however, DDC is authorized to reproduce the document for United States Government purposes.

The use of trade names in this report does not constitute an official endorsement or approval of the use of such commercial hardware or software. This report may not be cited for purposes of advertisement.

The information in this document has not been cleared for release to the general public.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>1.1</td>
<td>Objective</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Authority</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Background</td>
<td>7</td>
</tr>
<tr>
<td>2.0</td>
<td>EXPERIMENTAL METHODS</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Test Configuration</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Test Method</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Instrumentation</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Pressure Effects</td>
<td>8</td>
</tr>
<tr>
<td>3.0</td>
<td>TEST RESULTS AND DISCUSSION</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Material Consolidation</td>
<td>8</td>
</tr>
<tr>
<td>3.2</td>
<td>Dye Effects</td>
<td>10</td>
</tr>
<tr>
<td>3.3</td>
<td>Effects of Initial Pressure</td>
<td>11</td>
</tr>
<tr>
<td>4.0</td>
<td>CONCLUSIONS</td>
<td>11</td>
</tr>
<tr>
<td>5.0</td>
<td>RECOMMENDATIONS</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>DISTRIBUTION LIST</td>
<td>13</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Effects of Consolidation on the Reaction of Violet Smoke Mix IV.</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Effects of Dyes on the Reaction Rate of Colored Smoke Compositions.</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>The Effects of Initial Pressure on 50-Gram Samples of Violet Smoke Mix IV</td>
<td>12</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Cont'd)

LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bomb Calorimetry Test Apparatus</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Electrical Wiring Diagram of Thermocouple and Pressure</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Transducer Hookup</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Effects of Initial Pressure versus Heat of Reaction</td>
<td>12</td>
</tr>
</tbody>
</table>
PARAMETRIC STUDIES OF PYROTECHNIC MATERIALS BY BOMB CALORIMETRY

1.0 INTRODUCTION

1.1 Objective. The objective of this study was to determine the effects of 1) material consolidation, 2) dye collant and 3) initial pressure on the burning rate and energy output of pyrotechnic compositions.

1.2 Authority. The work described in this report was authorized by MIPR 8166104601F4W5 from Edgewood Arsenal to the National Space Technology Laboratories.

1.3 Background. One of the important criteria used for measuring combustion performance of a pyrotechnic composition is the chemical energy released in the form of heat. A preliminary study of the performance of a pyrotechnic composition in a large-scale colorimeter was performed under project No. 5754099. The results obtained from those experiments indicated that heat transfer due to convection and radiation significantly affected the accuracy of the experiment, but that a large-scale-type bomb calorimeter was feasible for predicting the combustion performance of a pyrotechnic composition. This study also indicated that a similar type of calorimeter vessel which would reduce the heat loss from radiation and convection might be developed. A study was undertaken to develop such a vessel. Based upon this study, testing was performed in the proposed apparatus using four different sulfur-based colored smoke mixes.

2.0 EXPERIMENTAL METHODS

2.1 Test Configuration. The apparatus used in this experiment is shown in figure 1. The reaction vessel is a cylindrical steel tank with an internal volume of 0.024 m³ and a wall thickness of 0.076 cm providing a total system heat capacity of 310 calories/°K at one atmosphere pressure. The tank is surrounded by four layers of 2.5 cm foil-backed fiberglass insulation.

2.2 Test Method. The experiments were performed using violet, red, green, and yellow smoke mixtures. These mixtures were pressed at Edgewood Arsenal to specified densities approximating first, second, third and fourth increment pressings typical of those used in the manufacturing of smoke grenades. Violet Smoke Mix IV, drawing No. B143-5-1 was pressed to densities of 1.16, 1.32, 1.48 and 1.61 grams per cubic centimeter. Each pellet was 5 cm (2 inches) in diameter and varied in height from 1.75 cm (11/16 inches) to 2.4 cm (15/16 inches) depending upon the pressed density. Weights varied from 53.1 grams to 50.5 grams with an average weight of 51.9 grams. The samples were used to measure the effect of consolidation upon the reaction rate of smoke mixtures.

Yellow, red, and green sulfur based smoke mixes were pressed into pellets of 1.33, 1.46, and 1.30 grams per cubic centimeter with average weights of 51.3, 54.2 and 52.3 grams respectively. These samples were used to determine the effect of specific dyes upon the reaction rate of the mixtures.
2.3 **Instrumentation.** Six chromel/alumel thermocouples were placed on the container. Four of the thermocouples were placed at 90° angles on the vessel wall 22.9 cm (8 inches) from the front of the vessel, and one each thermocouple was placed in the center of each end wall of the vessel. The thermocouples were connected to a Pace Model BRJW13A-24TT-1517 thermocouple reference junction then connected to underground cabling which led to the test control center (TCC) where the signals were recorded on a Honeywell Model 1612 Visicorder Oscillograph operated at 2.5 cm/sec (1 inch/sec). Two strain-gauge-type pressure transducers (BLH Model 151-HAC-134, 0 to 138 kilopascal [0-20 psi] full-pressure response) were mounted on each end of the vessel and connected to underground cabling to two Dynamic Model 6457 DC Amplifiers, each connected to the same oscillograph recorder. Figure 2 shows schematically the instrumentation setup.

2.4 **Pressure Effects.** The experiments on effect of initial pressure were performed in an early model of the calorimeter which used a thin metal liner within a larger cylindrical tank. Since in this version the sample holder was more massive and not directly connected to the liner, both sample holder and liner temperatures were included in the calculation of heat of reaction. Temperature and pressure were measured in the same manner as described previously. Due to the design of this calorimeter it was not possible to unambiguously evaluate the pressure rise rate, from which reaction rate is inferred.

3.0 **TEST RESULTS AND DISCUSSION**

3.1 **Material Consolidation.** Results of the tests to evaluate the effects of consolidation on the burning rate and energy output of violet smoke mix are shown in table 1. The total
Figure 2. Electrical Wiring Diagram of Thermocouple and Pressure Transducer Hookup
3.2 **Dye Effects.** Table 2 shows the tabulated results of the cooling effect of the dye in pyrotechnic compositions on the reaction rate and output energy. Total pressure was less for the green, red, and yellow smoke mixes than that recorded for the violet smoke at nearly the same densities. Time to maximum pressure was also longer for the other dye materials versus violet smoke; therefore, the pressure rate of rise was less for the other colored smokes. Heat of reaction was also less for the green, red, and yellow smoke mixes than the violet smoke mix at similar densities. In all measured aspects, the energy output from the red, green, and yellow smoke mixes were less than that for the violet smoke at similar densities.
Table 2. EFFECTS OF DYES ON THE REACTION RATE OF COLORED SMOKE COMPOSITIONS

<table>
<thead>
<tr>
<th>Sample material</th>
<th>Weight in grams</th>
<th>Pressed density gm/cc</th>
<th>Total pressure kpsicial</th>
<th>Time (sec)</th>
<th>Rate of pressure rise kpsicial/sec</th>
<th>Heat of reaction kcal/gm</th>
<th>Temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P1</td>
<td>Pmax</td>
<td>T1</td>
<td>Tmax</td>
</tr>
<tr>
<td>Green smoke</td>
<td>52.2</td>
<td>1.30</td>
<td>72.4</td>
<td>8.4</td>
<td>40.2</td>
<td>2.3</td>
<td>476</td>
</tr>
<tr>
<td></td>
<td>52.9</td>
<td>1.32</td>
<td>84.1</td>
<td>8.3</td>
<td>40.0</td>
<td>2.7</td>
<td>787</td>
</tr>
<tr>
<td></td>
<td>52.7</td>
<td>1.31</td>
<td>86.2</td>
<td>6.1</td>
<td>39.4</td>
<td>2.6</td>
<td>769</td>
</tr>
<tr>
<td></td>
<td>51.5</td>
<td>1.28</td>
<td>89.6</td>
<td>6.3</td>
<td>28.4</td>
<td>2.9</td>
<td>672</td>
</tr>
<tr>
<td>Yellow smoke</td>
<td>51.6</td>
<td>1.33</td>
<td>74.5</td>
<td>11.2</td>
<td>40.0</td>
<td>2.6</td>
<td>746</td>
</tr>
<tr>
<td></td>
<td>49.3</td>
<td>1.28</td>
<td>64.1</td>
<td>11.0</td>
<td>50.0</td>
<td>1.6</td>
<td>637</td>
</tr>
<tr>
<td>Red smoke</td>
<td>53.8</td>
<td>1.45</td>
<td>84.8</td>
<td>9.7</td>
<td>28.1</td>
<td>4.8</td>
<td>881</td>
</tr>
<tr>
<td></td>
<td>53.9</td>
<td>1.46</td>
<td>72.4</td>
<td>10.9</td>
<td>50.0</td>
<td>4.1</td>
<td>991</td>
</tr>
<tr>
<td></td>
<td>54.9</td>
<td>1.48</td>
<td>72.4</td>
<td>5.9</td>
<td>45.0</td>
<td>4.1</td>
<td>973</td>
</tr>
<tr>
<td></td>
<td>54.1</td>
<td>1.46</td>
<td>82.7</td>
<td>9.9</td>
<td>42.5</td>
<td>4.7</td>
<td>1047</td>
</tr>
</tbody>
</table>

3.3 Effects of Initial Pressure. The effects of initial pressure in the calorimeter on heat of reaction are tabulated in table 3 and presented graphically in figure 3. This work was conducted in the original calorimeter configuration using a metal liner inside a larger bomb. The results show that the heat of reaction changes by 40 percent when ambient pressure changes by 69 kilopascal (10 psi). These changes are on an order of magnitude greater than predictions based on thermodynamic consideration, and must be attributed to reaction of the dye or of the dextrin impurities in the smoke mix. Calculations show that the observed heat of reaction can be obtained if less than 10 percent of the dye is oxidized.

4.0 CONCLUSIONS

(1) The heat of reaction for the combustion of Violet Smoke Mix IV is inversely proportional to its consolidation density.

(2) The burning rate of Violet Smoke Mix IV is inversely proportional to the consolidation density.

(3) A moderate change in ambient pressure has a marked effect on the energy output of the violet smoke reaction.

(4) In all measured aspects, the energy output from the red, green and yellow smoke mixes were less than that for violet smoke at similar densities.

5.0 RECOMMENDATIONS

The results obtained in these experiments do not agree well with previous testing in a laboratory Parr Bomb apparatus. Although these experiments were cursory in nature and only

a small number of tests were performed, the apparatus used in these experiments met expectations as a calorimetric measuring device. Additional experiments with the vessel would be required to standardize the procedure and an analysis technique.

Table 3. THE EFFECTS OF INITIAL PRESSURE ON 50-GRAM SAMPLES OF VIOLET SMOKE MIX IV

<table>
<thead>
<tr>
<th>Initial pressure (kilo pascals (psi))</th>
<th>P (kilo pascals (psi))</th>
<th>Sample holder Δ T°C (°F)</th>
<th>Liner Δ T°C (°F)</th>
<th>Heat of reaction calories/gram</th>
</tr>
</thead>
<tbody>
<tr>
<td>101.4 (14.7)</td>
<td>44.1 (6.4)</td>
<td>43.7 (110.7)</td>
<td>24.3 (75.8)</td>
<td>560</td>
</tr>
<tr>
<td>118.6 (17.2)</td>
<td>47.6 (6.9)</td>
<td>46.9 (116.4)</td>
<td>27.9 (82.2)</td>
<td>624</td>
</tr>
<tr>
<td>132.4 (19.2)</td>
<td>51.7 (7.5)</td>
<td>54.5 (130.1)</td>
<td>32.9 (91.2)</td>
<td>700</td>
</tr>
<tr>
<td>151 (21.9)</td>
<td>60.7 (8.8)</td>
<td>53.1 (127.6)</td>
<td>35.6 (96)</td>
<td>743</td>
</tr>
<tr>
<td>170.3 (24.7)</td>
<td>53.1 (7.7)</td>
<td>54.2 (129.5)</td>
<td>37.3 (99.2)</td>
<td>776</td>
</tr>
</tbody>
</table>

Figure 3. Effects of Initial Pressure versus Heat of Reaction
<table>
<thead>
<tr>
<th>Addressee</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>US Army Armament Research and</td>
<td></td>
</tr>
<tr>
<td>Development Command</td>
<td></td>
</tr>
<tr>
<td>Attn: DRDAR-LCM</td>
<td></td>
</tr>
<tr>
<td>Dover, NJ 07801</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>Pine Bluff Arsenal</td>
<td></td>
</tr>
<tr>
<td>Attn: Safety Office</td>
<td>1</td>
</tr>
<tr>
<td>Engineering and Technology</td>
<td>1</td>
</tr>
<tr>
<td>Pine Bluff, AR 71601</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>Frankford Arsenal</td>
<td></td>
</tr>
<tr>
<td>Attn: Safety Office</td>
<td></td>
</tr>
<tr>
<td>Bridge and Tacony Streets</td>
<td>1</td>
</tr>
<tr>
<td>Philadelphia, PA 19137</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>Rocky Mountain Arsenal</td>
<td></td>
</tr>
<tr>
<td>Attn: Safety Office</td>
<td></td>
</tr>
<tr>
<td>Denver, CO 80240</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>1</td>
</tr>
<tr>
<td>National Aeronautics and Space Administration</td>
<td></td>
</tr>
<tr>
<td>Attn: Safety Office</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20546</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>1</td>
</tr>
<tr>
<td>NASA National Space Technology Laboratories</td>
<td></td>
</tr>
<tr>
<td>Attn: Safety Office</td>
<td></td>
</tr>
<tr>
<td>Bay St. Louis, MS 39529</td>
<td>1</td>
</tr>
<tr>
<td>Chairman</td>
<td></td>
</tr>
<tr>
<td>Department of Defense</td>
<td></td>
</tr>
<tr>
<td>Explosives Safety Board</td>
<td>1</td>
</tr>
<tr>
<td>Forrestal Building, GB-270</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20314</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>2</td>
</tr>
<tr>
<td>US Army Materiel Development and Readiness Command</td>
<td></td>
</tr>
<tr>
<td>Attn: Safety Office</td>
<td></td>
</tr>
<tr>
<td>5001 Eisenhower Avenue</td>
<td></td>
</tr>
<tr>
<td>Alexandria, VA 22333</td>
<td></td>
</tr>
</tbody>
</table>
Project Manager, Munitions Production Base
 Modernization and Expansion
 Attn: DRCPM-PBM-E/Mr. Dybacki
 USA Materiel Development and Readiness Command
 Dover, NJ 07801
 Director
 US Army Ballistics Research Laboratories
 Attn: Safety Office
 Aberdeen Proving Ground, MD 21005
 Director
 Defense Research & Engineering
 Pentagon
 Washington, DC 20310
 Administrator
 Defense Documentation Center
 Attn: Accessions Division
 Cameron Station
 Alexandria, VA 22314
 Commander
 Chemical Systems Laboratory
 Attn: DRDAR-CLF
 DRDAR-CLN
 Aberdeen Proving Ground, MD 21010
 Commander
 Aberdeen Proving Ground
 Attn: DRSAR-MAS-C
 Aberdeen Proving Ground, MD 21010
 Commander
 US Army Armament Readiness Command
 Attn: DRSAR-IRC-E/Mr. Khwaja
 Rock Island, IL 61201
 Director
 Chemical Systems Laboratory
 Attn: DRDAR-CLJ-L
 DRDAR-CLJ-R
 Aberdeen Proving Ground, MD 21010
 Commander
 US Army Armament Research and Development Command
 Attn: DRDAR-TSS
 Dover, NJ 07801