MFP Geoacoustic Inversion of Haro Strait Array Data

A. Tolstoy
1350 Beverly Rd, Ste 115-293, McLean VA 22101
phone: (703) 760-0881 email: atolstoy@ieee.org

Award Number: N00014-05-M-0023

LONG TERM GOALS

The primary long term objective of this project is:

- to provide a rapid, real-time, efficient, wide area assessment technique to estimate full 3-D (range, depth, and azimuth) geoacoustic shallow water parameters. These parameters include geometric values such as source location, array element location (arrays can be non-linear), and water depths as well as bottom properties such as sediment layer thicknesses, sound-speeds, densities, and attenuations).

This wide area assessment would be made via multiple rapidly deployed receiver arrays and multiple broadband low frequency sources. The environmental parameters could then be used as inputs to signal processing methods for the detection, localization, and identification of targets or for monitoring of the region for effects such as global warming or for the tracking of marine mammals.

OBJECTIVES

The objectives of this work include

- continued evaluation of parameter sensitivities for inversion optimization;
- continued investigation of geoacoustic inversion for range-dependent slices;
- investigation of the geometric parameters critical to geoacoustic inversions. These properties are primarily the source location (range and depth) as well as the receiver array element locations (array can be non-linear) and the water depths along the source-to-receiver path;
- incorporation of the RAMGEO PE model into the SUB-RIGS model.

APPROACH

The Matched Field Processing (MFP) tomographic inversion for geoacoustic parameters is a relatively new inversion approach which can combine the SUB-RIGS method (Tolstoy, '98; '03, '04a,b) or any single slice inversion data with the linearized tomographic MFP method LINTOMO (Tolstoy et al., '91; Tolstoy, '92, '94). It is designed specifically for rapid, high resolution 3-D estimation of shallow water environmental parameters. The LINTOMO plus SUB-RIGS approach entails the analysis of low frequency components (from 50 to 500Hz in shallow water) for multiple sources densely deployed around and through an ocean region and heard on widely distributed arrays of receivers. For shallow water the vertical arrays
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
30 SEP 2005

2. REPORT TYPE

3. DATES COVERED
00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
MFP Geoacoustic Inversion of Haro Strait Array Data

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
A. Tolstoy, 1350 Beverly Rd., Ste 115-294, McLean, VA, 22101

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
code 1 only

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
7

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
should ideally span the water column although this is not necessary and is not available for
the Haro Strait data.

Prior to input to LINTOMO the individual path data must be “inverted”. Thus, in preparation some data have been
examined in terms of their geometric properties in order to infer source and array parameters
such as source depth, array phone depths and ranges, as well as the average flat water depth
for the path. This approach uses simple ray paths to estimate arrival time differences based
on geometry alone as compared with the data. The geometric relationships at issue are
shown in Fig. 1. The approach extends that of Michalopoulou and Ma, ’05, by examining
non-uniqueness of the time domain difference optimization in more detail and in simulating
the resultant time domain fields for comparison with the Haro Strait data.

WORK COMPLETED

Recent work (FY05) has resulted in:

- Preliminary broadband analysis of the nw014 path of Haro St data. Results at several
  FFT frequencies both for test and simulated data were presented at the Vancouver
  ASA meeting (5/05).

- Time domain analysis of several paths of Haro St data (nw014, nw024, sw029) to find
  the possible geometries of the paths. Generation of pulse signals for the optimized ge-
  ometries of these paths via RAMGEO. Analysis used only the direct, surface reflected,
  and bottom reflected signals on 8 array phones assuming a flat bottom for each path
  (Tolstoy, ’05).

RESULTS

- Preliminary broadband FFT analysis and inversion via the SUB-RIGS method of the
  nw014 path of Haro St data show that the path geometry still needs to be determined
  prior to geoacoustic inversion. Ambiguities are overwhelming in the presence of unde-
  termined geometry even at multiple frequencies.

- Time domain analyses of several paths of Haro St data (nw014, nw024, sw029) indi-
  cate that ambiguities are still a major concern requiring additional geometric analysis
  allowing for non-flat bottoms (sloping), additional surface and bottom reflections as
  possible, and more phones in the arrays. Progress for the early boundary reflections
  (a typical result is shown in Fig. 2) is very promising.

IMPACT/APPLICATION

This technique is likely to influence array technology, multiple array deployment, and the
selection of propagation models used by the fleet for target detection, localization, and
geoacoustic inversion. The estimation of true 3-D geoacoustic properties will be extremely
important for the detection and localization of targets such as subs as well as of buried
targets such as mines.

2
Figure 1: Geometric relationships between (a) the first surface reflected arrival distance \((d_1 + d_2)\) and the direct arrival distance \(d\); (b) the first bottom reflected arrival distance \((d_3 + d_4)\) and the direct arrival distance \(d\).
Figure 2: Data and simulated pulse fields at the NW array for the path from shot 14. (a) The data as a function of time and phone (array shown in Tolstoy, '05); (b) the field simulated via the pulse ramgeo for the optimal parameter values (Table 2 of Tolstoy, '05); (c) overlay of the data and simulated fields. The simulated data have been shifted to line up with the direct arrivals.
RELATED PROJECTS Investigations in the area of geoacoustic inversions are being conducted by the Canadians (N. Chapman et al. investigating the Haro Strait data; G. Heard et al.), Europeans (R. Hamson and M. Ainslie of Great Britain; S. Jesus of Portugal; D. Simons and M. Snellen of The Netherlands; Y. Stephan et al. of France; M. Taroudakis and M. Markaki of Greece; V. Westerlin of Sweden), and Asians (P. Ratilal et al. of Singapore; R. Zhang et al. of China). Moreover, geometric considerations are being examined by E. Michalopoulou at NJIT as well as by Skarsoulis et al. (Greece).

REFERENCES


PUBLICATIONS


HONORS/AWARDS/PRIZES


- Editor of JASA (since 7/03).

- Editorial Board of JCA.

- Invited talk “The Hunt for Red October and Underwater Acoustics” local ASA group, VA.

- ASA Committee Work: WIA (Mentoring contact), AO, UW, Springer Books.