A FORTRAN COMPUTER PROGRAM TO EVALUATE AND PLOT THE STATISTICS OF THE MAGNITUDE-SQUARED COHERENCE FUNCTION

Date: 5 February 1986
Prepared by: Helen A. Duling
Helen A. Duling
Electronics Engineering and Computer Applications Division
Surface Ship Sonar Department

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

REFERENCE ONLY
A FORTRAN Computer Program to Evaluate and Plot the Statistics of the Magnitude-Squared Coherence Function

This document contains computer listings for two FORTRAN computer programs. The first calculates the probability density function associated with the estimated magnitude-squared coherence function and the second calculates the cumulative distribution function associated with the estimated magnitude-squared coherence function.
ABSTRACT

This document contains computer listings for two FORTRAN computer programs. The first calculates the probability density function associated with the estimated magnitude-squared coherence function and the second calculates the cumulative distribution function associated with the estimated magnitude-squared coherence function.

ADMINISTRATIVE INFORMATION

This memorandum was prepared by Helen A. Duling, code 33142, Systems Analysis and Applications Group. The author of the memorandum is located at the New London Laboratory, Naval Underwater Systems Center, New London, Connecticut 06320.

ACKNOWLEDGEMENT

Dr. G. Clifford Carter of code 3314 is responsible for providing me with the necessary documents and information which enabled me to investigate and calculate the cumulative distribution and probability density functions associated with the estimation of the magnitude-squared coherence function.
I. INTRODUCTION

The purpose of this memorandum is to document the FORTRAN code used to calculate the probability density function and the cumulative distribution function associated with the estimated mean-squared coherence function, and to define the variables used in calculation.

II. CALCULATIONS

The first order probability density function (PDF) for the estimate of the magnitude-squared coherence function (MSC) given the true value of the MSC and the number of independent segments processed, \(n \), can be written as (equation 4.4 in (1))

\[
P(\hat{\gamma}^2 | \gamma^2, \gamma^2) = (n-1) \left[\frac{(1-\gamma^2)(1-\hat{\gamma}^2)}{(1-1\hat{\gamma}^2)^2} \right]^n \cdot \frac{(1-\gamma^2\hat{\gamma}^2)}{(1-1\hat{\gamma}^2)^2} \cdot \binom{n}{n_1, n_2, \ldots, n_k} F_1(-n, 1-n; \gamma^2, 1\hat{\gamma}^2, \hat{\gamma}^2)
\]

where

\(\hat{\gamma}^2 \) = estimated MSC = ESTCOH
\(\gamma^2 \) = actual MSC = COH
\(F_1(a, b; c; z) \) = hypergeometric function

Note \(F (-m, b; c; z) \) can be expressed as (equation 15.4.1 in (2))

\[
\binom{n}{n_1, n_2, \ldots, n_k} F_1(-m, b; c; z) = \sum_{n=0}^{\infty} \binom{(-m)_n}{(b)_n} \frac{z^n}{n!}
\]
The first-order cumulative distribution function for the estimate of the MSC, given the true value of MSC and the number, n, of independent segments processed, can be written as (equation 4.6 in (1)),

$$P(1 \frac{\sum}{\sum} \frac{\sum}{\sum} \frac{\sum}{\sum}) = 1 \frac{\sum}{\sum} \frac{\sum}{\sum} \frac{\sum}{\sum}$$

Note that the hypergeometric function $F(-1,1-N;1;z)$ can be expressed as (equation 8 in (3)),

$$\sum_{k=0}^{\infty} T_k$$

where

$$T_k = (-1)_k (1-N)_k z^k$$

$$T_0 = 1$$

$$\frac{T_k}{T_{k-1}} = \frac{(k-1) (k-1+1-N) z}{k^2}$$
III. EXAMPLE CALCULATION

The following is an example calculation corresponding to the specific values:

\[\text{MSC} = 0.3 \]
\[n = 32 \]

The outputs of the FORTRAN programs are tabulated in Tables 1 and 2, and shown graphically in Figures 1 and 2.
PROBABILITY DENSITY FUNCTION Verification

file : PDF.FOR

Helen A. Duling

Scientific and Engineering Studies

Coherence Estimation

Purpose : The purpose of this program is to verify the Probability Density Function found on page 28, TR4343. Estimation of the Magnitude Squared Coherence Function (Spectrum) by G.C.Carter. The PDF is calculated given n = 32, magnitude squared coherence function = 0.3. The estimated value (magnitude squared coherence function) varies from 0 to 1.

```
REAL PDF,TEMPl,TEMP2,COH
REAL Z,HSUM,ESTCOH,TERM4
INTEGER N,I,TERM1,TERM2,L

OPEN (UNIT=3, FILE='VERIFY2',STATUS='NEW')

N = 32
COH = 0.3
ESTCOH = 0.0
TEMP1 = 0.0
TEMP2 = 0.0
PDF = 0.0

WRITE (3,1) 'Probability Density Function Calculation'
WRITE (3,2) 'Given : n = ',N,' and c = ',COH
WRITE (3,3) 'c estimate', 'PDF value'
WRITE (3,4) '___________', '__________'
```

c ESTCOH is varied from 0 through 1 in increments of 0.025

DO I=1,40,1
ESTCOH = (I*0.025)
TEMP1 = (((1-COH)*(1-ESTCOH))/((1-(ESTCOH*COH))**2))**N
TEMP2 = ((1-(COH*ESTCOH))/((1-COH)**2))
TERM1 = N-1
TERM2 = 1-N
TERM4 = COH*ESTCOH

CALL HYPER (TERM1,TERM2,TERM4,HSUM)
PDF = ((N-1)* TEMP1 * TEMP2 * HSUM)

WRITE (3,4) ESTCOH,PDF
WRITE (3,2)
PDF = 0.0
TEMP1 = 0.0
TEMP2 = 0.0
END DO

END

C SUBROUTINE - computes the hypergeometric function

SUBROUTINE HYPER (L, TERM2,Z,HSUM)

INTEGER L,K,TERM2
REAL T

HSUM = 0.0
T=0.0
DO K = 0,L
 IF (K .EQ. 0) THEN
 T = 1.0
 ELSE
 T = (((K-1-L)*(K-1+TERM2)*Z)*T)/(K**2)
 ENDIF
 HSUM = HSUM + T
END DO

END
The purpose of this program is to verify the Cumulative Distribution Function found on page 33. of TR4343 Estimation of the Magnitude Squared Coherence Function (Spectrum) by G. Clifford Carter. The PDF is calculated given $n = 32$, and magnitude squared coherence function $= 0.3$. The estimated c value (magnitude squared coherence function) varies from 0 to 1.

```fortran
REAL CDF, TEMP, SUM, COH, ESTCOH, HSUM
REAL PARTIAL, Z, TERM4
INTEGER N, K, KK, I, L, TERM1, TERM2

OPEN (UNIT=3, FILE = 'VERIFY1', status='new')

! Initialization - set constants
N = 32
COH = 0.3
ESTCOH = 0.0
TEMP = 0.0
PARTIAL = 0.0
CDF = 0.0

! Format statements
1 FORMAT(10x,a)
2 FORMAT(1x)
3 FORMAT(20x,a,9x,a)
4 FORMAT(22x,F7.5,1x,F18.5)
5 FORMAT(20x,a)
6 FORMAT(20X,A,1X,I2,A,1X,F2.1)

WRITE(3,1) 'Cumulative Distribution Function Calculation'
WRITE(3,2)
WRITE(3,6) 'Given : n = ',N,' and c = ',COH
WRITE(3,2)
WRITE(3,3) 'c estimate', 'CDF value'
WRITE(3,2)
WRITE(3,3) '_________','_________'
WRITE(3,2)
```

This code initializes variables and opens a file for writing. It then sets constants and format statements and prints the cumulative distribution function calculation details.
c ESTCOH is varied from 0 through 1 in increments of 0.025

DO I=1,40,1
 ESTCOH = (I*0.025)
 TEMP = (((1-COH)/(1-(ESTCOH * COH)))) ** N
 DO KK=1,N-1
 SUM = 1.0
 K=KK-1
 IF (ESTCOH .NE. 1.0) THEN
 SUM = (((1.0-ESTCOH)/(1.0 - (COH * ESTCOH))) ** K)
 ENDIF
 TERM1 = K
 TERM2 = 1-N
 TERM4 = COH*ESTCOH
 CALL HYPER(TERM1,TERM2,TERM4,HSUM)
 PARTIAL = PARTIAL + (SUM * HSUM)
 END DO
 IF (ESTCOH .EQ. 1.0) THEN
 CDF = 1.0
 ELSE
 CDF = (ESTCOH * TEMP * PARTIAL)
 ENDIF
 WRITE (3,4) ESTCOH,CDF
 WRITE (3,2)
 CDF = 0.0
 PARTIAL = 0.0
 TEMP = 0.0
END DO
END

C SUBROUTINE - computes the hypergeometric function

SUBROUTINE HYPER (L, TERM2,Z,HSUM)

INTEGER TERM2,K,L
REAL T

HSUM = 0.0
T = 0.0
DO K = 0,L
 IF (K .EQ. 0) THEN
 T = 1.0
 ELSE
 T = (((K-1-L)*(K-1+TERM2)*Z)*T)/ (K**2)
 ENDIF
 HSUM = HSUM + T
END DO
RETURN
END
Probability Density Function Calculation

Given: \(n = 32 \) and \(c = 0.3 \)

<table>
<thead>
<tr>
<th>(c) estimate</th>
<th>PDF value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05000</td>
<td>0.07430</td>
</tr>
<tr>
<td>0.10000</td>
<td>0.46916</td>
</tr>
<tr>
<td>0.15000</td>
<td>1.41735</td>
</tr>
<tr>
<td>0.20000</td>
<td>2.76195</td>
</tr>
<tr>
<td>0.25000</td>
<td>3.87229</td>
</tr>
<tr>
<td>0.30000</td>
<td>4.09393</td>
</tr>
<tr>
<td>0.35000</td>
<td>3.32142</td>
</tr>
<tr>
<td>0.40000</td>
<td>2.06627</td>
</tr>
<tr>
<td>0.45000</td>
<td>0.97083</td>
</tr>
<tr>
<td>0.50000</td>
<td>0.33455</td>
</tr>
<tr>
<td>0.55000</td>
<td>0.08077</td>
</tr>
<tr>
<td>0.60000</td>
<td>0.01276</td>
</tr>
<tr>
<td>0.65000</td>
<td>0.00120</td>
</tr>
<tr>
<td>0.70000</td>
<td>0.00006</td>
</tr>
<tr>
<td>0.75000</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.80000</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.85000</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.90000</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.95000</td>
<td>0.00000</td>
</tr>
<tr>
<td>1.00000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

Table 1
Cumulative Distribution Function Calculation

Given: $n = 32$ and $c = .3$

c estimate	CDF value
0.05000 | 0.00062
0.10000 | 0.00737
0.15000 | 0.03634
0.20000 | 0.11169
0.25000 | 0.24973
0.30000 | 0.43991
0.35000 | 0.64271
0.40000 | 0.81155
0.45000 | 0.92067
0.50000 | 0.97444
0.55000 | 0.99403
0.60000 | 0.99906
0.65000 | 0.99991
0.70000 | 0.99999
0.75000 | 1.00000
0.80000 | 1.00000
0.85000 | 1.00000
0.90000 | 1.00000
0.95000 | 1.00000
1.00000 | 1.00000

Table 2
PDF versus estimated coherence

Figure 1
CDF versus estimated coherence

Figure 2
IV. CONCLUSION

The magnitude-squared coherence function can be used for signal detection and passive sonar parameter estimation. To exploit this function it is necessary to estimate the quantity. The statistics of the estimate have been well documented, see reference (2) Carter, 1972; however, the computer software is complex and involves a number of subtleties because the hypergeometric function consists of combinations of very large and very small numbers in ways that preclude a simple straight-forward programming of the equations. Moreover, if you follow the procedure outlined in this memorandum, which on the surface is very straight-forward and use the computer software listed, then one can evaluate these complex numerical problems with little or no numerical overflow or underflow problem in the parameter range of interest.

A computer program was written and tested to evaluate the probability density function and cumulative distribution function associated with the magnitude-squared coherence function.

This memorandum presents the formulas and FORTRAN programs tested for the particular case when the magnitude squared coherence equals .3 and the number of independent segments processed is 32.

The results of the sample test case are presented in tabular and graphical form in addition to the actual program listing.
REFERENCES

A FORTRAN COMPUTER PROGRAM TO EVALUATE AND PLOT THE
STATISTICS OF THE MAGNITUDE-SQUARED COHERENCE FUNCTION
Helen A. Duling
Systems Analysis and Applications Division
Surface Ship Sonar Department
TM No. 851188
13 January 1986
UNCLASSIFIED

DISTRIBUTION LIST

Internal

Codes
3314 (4 copies)
3314 (K. Andronowitz, K. Briotti, A. Brown,
E. Eby, A. Failone, V. Gonzalez, E. Martins,
D. Lerro, W. Rahr, S. Sutherland)
3314 H. Duling (3 copies)
3315
3334
3334 (D. Klingbeil)
33B (M. Cloutier)
0211 (R. Bernier)
021311 (NLON Library - 3 copies)
021312 (NPT Library)

Total 26