Mathematically Equivalent, Computationally Non-equivalent Formulas and Software Comprehensibility

Marvin J. Goldstein
Surface Ship Sonar Department

Naval Underwater Systems Center
Newport, Rhode Island/New London, Connecticut

Approved for public release; distribution unlimited
Title: Mathematically Equivalent, Computationally Non-equivalent Formulas and Software Comprehensibility

In the development of mathematical software, often the formula that defines the mathematical purpose of the software is not used directly in the software. The computational algorithm used is often mathematically equivalent to the defining formula, but bears little resemblance to it for computational reasons. Therefore, although the flow of control of the coded algorithm may be visible to a maintenance programmer, comprehending and maintaining the code effectively may still be difficult if only the formula that defines the purpose of the code is provided as documentation. In this memorandum, we provide some examples of this consequence of transforming the mathematical definition of a computation into a coded algorithm.

Subject Terms:
- mathematical software

Security Classification:
- Unclassified
Technical Memorandum

MATHEMATICALLY EQUIVALENT, COMPUTATIONALLY NON-EQUIVALENT FORMULAS AND SOFTWARE COMPREHENSIBILITY

Date: 22 May 1985
Prepared by: Marvin J. Goldstein
Surface Ship Sonar Dept

Approved for public release; distribution unlimited
ABSTRACT

In the development of mathematical software, often the formula that defines the mathematical purpose of the software is not used directly in the software. The computational algorithm used is often mathematically equivalent to the defining formula, but bears little resemblance to it for computational reasons. Therefore, although the flow of control of the coded algorithm may be visible to a maintenance programmer, comprehending and maintaining the code effectively may still be difficult if only the formula that defines the purpose of the code is provided as documentation. In this memorandum, we provide some examples of this consequence of transforming the mathematical definition of a computation into a coded algorithm.

ACKNOWLEDGEMENT

The author is grateful to Dr. David Wood for useful comments in the preparation of this memorandum.

ADMINISTRATIVE INFORMATION

This memorandum was prepared under Job Order No. 771Y00, Special Projects and Studies, and Job Order No. W65000, EVA Prog. Modeling Efforts, Principal Investigator, H. Weinberg (Code 3332). The author of this memorandum is located at the New London Laboratory, Naval Underwater Systems Center, New London, Ct 06320.
INTRODUCTION

It is generally agreed that clearly written code helps the programmer working on it to grasp its meaning more quickly, so that program changes can be applied with more confidence. Although structured coding promotes program readability by exposing the program's flow of control, so that one can follow the control flow in a top-down manner, it does not necessarily follow that a reader of structured code will comprehend its algorithms sufficiently to effectively maintain the code. The reason for this is that in general there are a multitude of algorithms that can be chosen to perform any particular program transaction. The algorithm that is chosen is determined by computational considerations, and often bears little resemblance to the formulas that were used to define the transaction originally. Therefore, although the coded algorithm's flow of control may be highly visible to a maintenance programmer, comprehending the algorithm may be difficult without documentation that describes the algorithm and its computational advantages, as well as identifying the transaction it represents.

In this memorandum, we give some examples of mathematically - but not computationally - equivalent formulas that result from transforming the mathematical definition of a computation into a coded algorithm, showing that without documenting the algorithm the resulting structured code may not be comprehensible enough to maintain effectively.

BACKGROUND INFORMATION

In the development of mathematical software, often the formula that defines the mathematical purpose of the software is not used directly in the software. Often the computational algorithm is based on some mathematically equivalent formula that is determined by computer arithmetic, operating system or hardware features that impact computational accuracy, execution efficiency or storage economy. For example, since the laws of additive associativity and closure for the real number system do not hold for floating-point computer number systems, the mathematically equivalent expressions \((x+1)-1\) and \(x+(1-1)\) will not give the same computer results for all values of \(x\).

Furthermore, the same algorithm can be implemented in a computer program in different ways. For example, the structure of the flow of control of a program module depends on the programmer. In particular, given two FORTRAN implementations of an algorithm, the flow of control of one of them may be easy to follow, while the flow of control of the other may be as difficult to follow as the entwining strands of spaghetti [1]. On the other hand, implementation efforts to improve program execution efficiency, which refine the algorithm further, may demote software clarity.

Therefore, three stages to the development of mathematical software can be identified. Firstly, a formula is specified that defines the purpose of the computation. Secondly, a computational algorithm is selected from among mathematically equivalent forms of the defining formula that differ in their computational performance. This is done to produce an algorithm that satisfies certain computational requirements of accuracy, execution efficiency and/or storage efficiency. Thirdly, the selected algorithm is coded. Therefore, unless the mapping of the defining formula into the coded algorithm is documented, maintenance of the software may still be difficult regardless of the structuredness of the control flow of the code.
EXAMPLES

Consider constructing software to compute the magnitude of a complex number \(z = x + iy \) on a computer where the largest and smallest positive computer numbers are \(n \) and \(1/n \), respectively, with \(n \gg 2 \). The standard mathematical definition for this computation is

\[
\text{abs}(z) = \sqrt{x^2 + y^2}
\]
(1)

If either the magnitude of \(x \) or the magnitude of \(y \) is outside the interval \([1/\sqrt{n}, \sqrt{n}]\), use of the standard definition as a computational formula results in computer overflow or underflow. On the other hand, if the magnitude of \(x \) and the magnitude of \(y \) lie in the interval \([1/n, n/\sqrt{2}]\), which contains the interval \([1/\sqrt{n}, \sqrt{n}]\), using the mathematically equivalent formula

\[
\text{abs}(z) = v \sqrt{1 + (w/v)^2}
\]
(2)

where

\[
v = \max(\text{abs}(x), \text{abs}(y)), \quad w = \min(\text{abs}(x), \text{abs}(y))
\]

does not cause computer overflow and makes computer underflow inconsequential. However, note that in Figure 1 the structured FORTRAN codes based on these mathematically equivalent formulas only vaguely resemble each other. In fact, given that the purpose of Code 2 is to compute the magnitude of a complex number \(z \), which is traditionally defined by Eq. (1), it is likely that without additional information a maintenance programmer would have difficulty comprehending the encoded algorithm by just reading the FORTRAN code.

FIGURE 1

CODE 1 for Eq.(1)

\[
\text{ABSZ} = -1.0
\]
\[
\text{ROOT} = \sqrt{\frac{n}{2.0}}
\]
\[
B = \text{ABS}(x) \cdot \text{LT.ROOT} \cdot \text{AND} \cdot \text{ABS}(y) \cdot \text{LT.ROOT}
\]
\[
\text{IF}(B)\text{THEN}
\]
\[
\text{ABSZ} = \sqrt{x^2 + y^2}
\]
\[
\text{END IF}
\]

CODE 2 for Eq.(2)

\[
\text{ABSZ} = -1.0
\]
\[
\text{ROOT} = \frac{n}{\sqrt{2.0}}
\]
\[
W = \text{AMIN1}(\text{ABS}(x), \text{ABS}(y))
\]
\[
V = \text{AMAX1}(\text{ABS}(x), \text{ABS}(y))
\]
\[
\text{IF}(V.\text{EQ}.0.0)\text{THEN}
\]
\[
\text{ABSZ} = 0.0
\]
\[
\text{ELSE}
\]
\[
\text{IF}(V.\text{LT}.\text{ROOT})
\]
\[
\text{ABSZ} = V \cdot \sqrt{1 + (W/V)^2}
\]
\[
\text{END IF}
\]

As a second example, consider computing the matrix product \(V \) of the \(n \)-th order matrices \(A \) and \(X \), which is defined by

\[
(V)_{ik} = \sum_{j=1}^{n} A_{ij} X_{jk}
\]
(3)
The mathematical definition of the element in the i-th row and k-th column of \(V \), given by (3), is the inner product of the i-th row of matrix \(A \) with the k-th column of matrix \(X \). Typically, one computes all the elements in the k-th column in this way for each of the columns of the product \(V \). Expressing this in structured FORTRAN gives

```fortran
CODE 3

DO 30 K = 1, N
   DO 25 I = 1,N
      V(I,K) = 0.0
      DO 15 J = 1, N
         V(I,K) = V(I,K) + A(I,J) * X(J,K)
      15 CONTINUE
   25 CONTINUE
30 CONTINUE
```

Note that for each value of \(k \) this algorithm visits the elements of matrix \(A \) in row major order:

\[
A_{11}, A_{12}, \ldots, A_{1n}, A_{21}, A_{22}, \ldots, A_{2n}, \ldots, A_{n1}, A_{n2}, \ldots, A_{nn}
\]

But, in [2], it is shown that on virtual memory systems like the VAX, addressing matrix elements in this order is inefficient when assigned main memory is too small to contain the code and its matrices. In order to reduce execution time, matrix algorithms written in FORTRAN should be based on addressing matrix elements in column major order:

\[
A_{11}, A_{21}, \ldots, A_{1n}, A_{22}, \ldots, A_{2n}, \ldots, A_{nn}
\]

Now consider the following mathematically equivalent method of computing the elements in the k-th column of matrix \(V \), which is based on visiting the elements of the \(A \) array in column major order. The k-th column of \(V \) is computed recursively by generating a finite sequence of \(n + 1 \) vector approximations to it:

\[
(0) \quad (j) \quad (j-1) \\
V_k = 0, \quad V_k = V_k + X_k A_{jk} \quad (j = 1, \ldots, n)
\]

(4)

where

\[
A = \begin{bmatrix}
A_{1j} \\
A_{2j} \\
\vdots \\
A_{nj}
\end{bmatrix}
\]

\[
j = \begin{bmatrix}
\ldots \\
\ldots \\
\ldots \\
\ldots
\end{bmatrix}
\]
and \(V \) is the \(k \)-th column of \(V \); hence at the \(j \)-th stage of the recursion each element of the \(j \)-th column of matrix \(A \) is multiplied by the \(j \)-th element of column \(k \) of matrix \(X \), so that the algorithm visits the elements of matrix \(A \) in column major order. The corresponding structured FORTRAN code for this is

\[
\text{CODE 4}
\]

\[
\begin{align*}
\text{DO } & 10 \ K = 1, \ N \\
& \text{DO } 5 \ I = 1, \ N \\
& \quad V(I, K) = 0.0 \\
5 & \text{CONTINUE} \\
10 & \text{CONTINUE} \\
& \text{DO } 30 \ K = 1, \ N \\
& \text{DO } 25 \ J = 1, \ N \\
& \quad \text{DO } 15 \ I = 1, \ N \\
& \quad \quad V(I, K) = V(I, K) + A(I, J) * X(J, K) \\
15 & \text{CONTINUE} \\
25 & \text{CONTINUE} \\
30 & \text{CONTINUE}
\end{align*}
\]

In Table 1, VAX 11/780 batch execution times for Codes 3 and 4 show the superiority in execution efficiency of Code 4 when matrix memory requirements exceed a user's assigned main memory extent of 250 pages. It is assumed that \(V(I, K) \) is accumulated in double precision.

TABLE 1

TIMING FOR MATRIX MULTIPLICATION ON THE VAX 11/780

(assigned main memory extent = 32,000 words)

<table>
<thead>
<tr>
<th>Order (n)</th>
<th>Memory Requirements (in words)</th>
<th>Code 3 (in cpu sec.)</th>
<th>Code 4 (in cpu sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1,024</td>
<td>.07</td>
<td>.07</td>
</tr>
<tr>
<td>32</td>
<td>4,096</td>
<td>.61</td>
<td>.53</td>
</tr>
<tr>
<td>64</td>
<td>16,384</td>
<td>5.75</td>
<td>4.32</td>
</tr>
<tr>
<td>128</td>
<td>65,536</td>
<td>86.41</td>
<td>45.91</td>
</tr>
<tr>
<td>200</td>
<td>160,000</td>
<td>910.88</td>
<td>157.78</td>
</tr>
<tr>
<td>240</td>
<td>230,400</td>
<td>5581.4</td>
<td>274.72</td>
</tr>
<tr>
<td>256</td>
<td>262,144</td>
<td>6828.3</td>
<td>362.44</td>
</tr>
<tr>
<td>512</td>
<td>1,048,576</td>
<td>56858.0</td>
<td>2668.27</td>
</tr>
</tbody>
</table>

Unfortunately, knowing only the usual definition (3) of matrix multiplication and that Code 4 computes the product of two \(n \)-th order matrices, a maintenance programmer might replace Code 4 with the shorter Code 3 in order to reduce program control complexity. However, doing this could diminish the code's execution efficiency dramatically. In other words, failure to provide documentation that describes the computational ramifications of the algorithm used to implement a program module's function can lead to counter-productive code modifications during software maintenance.
Now consider unrolling the innermost DO-loops of Code 4 to reduce the loop overhead of incrementing the value of \(I \), testing the new value of \(I \) against \(N \) and branching to the beginning of the loop. Doing this will improve the program's execution efficiency and refine algorithm (4) further. Assuming that 4 divides \(N \) exactly, unrolling Code 4 to a depth of 4 gives the more efficient, but longer structured code.

```
CODE 5

DO 10 K = 1, N
    DO 5 I = 1, N, 4
        V(I,K) = 0.0
        V(I+1,K) = 0.0
        V(I+2,K) = 0.0
        V(I+3,K) = 0.0
    5 CONTINUE
10 CONTINUE

DO 30 K = 1, N
    DO 25 J = 1, N
        DO 15 I = 1, N, 4
            V(I,K) = V(I,K) + A(I,J) * X(J,K)
            V(I+1,K) = V(I+1,K) + A(I+1,J) * X(J,K)
            V(I+2,K) = V(I+2,K) + A(I+2,J) * X(J,K)
            V(I+3,K) = V(I+3,K) + A(I+3,J) * X(J,K)
        15 CONTINUE
25 CONTINUE
30 CONTINUE
```

The corresponding algorithm for computing the \(k \)-th column of \(V \) is

\[
V_{k}^{(j)} = V_{k}^{(j-1)} + A_{j,jk} X_{j,k} \quad (j = 1, ..., n) \quad (5)
\]

where for each value of \(j \):

\[
\begin{bmatrix}
V_{4i-3,k}^{(j)} \\
V_{4i-3,j}^{(i)} \\
\vdots \\
V_{4i,k}^{(j)}
\end{bmatrix} = \begin{bmatrix}
A_{4i-3,j}^{(i)} \\
A_{j}^{(i)} \\
\vdots \\
A_{4i,j}^{(j)}
\end{bmatrix}
\quad (i=1, ..., n/4)
\]

Note that without an explanation of loop unrolling, a maintenance programmer may puzzle over the structured FORTRAN implementation of algorithm (4) given by Code 5.

As a third example, consider computing the eigenvalues of a real symmetric Toeplitz matrix. The elements of a symmetric Toeplitz matrix \(T \) of order \(n \) satisfy the relationship

\[
T_{jk} = T_{j+1,k+1} \quad (6)
\]
Therefore,

\[
T_{jk} = T_{n-k+1,n-j+1} = T_{n-j+1,n-k+1}
\]

(7)

by adding \(n+1-j-k\) to both \(j\) and \(k\). Hence reversing the order of the columns and rows of a symmetric Toeplitz matrix yields the original matrix; in matrix notation

\[
JTJ = T
\]

(8)

where \(J\) is obtained by reversing the columns of the \(n\)-th order identity matrix \(I\). A consequence of (8) is that any real symmetric Toeplitz matrix \(T\) of even order \(2n\) can be written in the form

\[
T = \begin{bmatrix}
A & BJ \\
J B & J AJ
\end{bmatrix}
\]

(9)

where \(A = A\), \(B = B\), \(A\) is Toeplitz and \(B\) is Hankel. But note that matrix \(T\) is similar to

\[
R T R^T = \begin{bmatrix}
A+B & 0 \\
0 & A-B
\end{bmatrix}
\]

(10)

where \(R\) is the orthogonal matrix

\[
R = \sqrt{0.5}\begin{bmatrix}
I & I \\
J & -J
\end{bmatrix}
\]

(11)

Therefore, the eigenvalues of matrices \(T\) and \(R T R^T\) are the same. Consequently, computing the eigenvalues of an even order real symmetric Toeplitz matrix \(T\) is mathematically equivalent to computing the eigenvalues of the smaller symmetric matrices \(A+B\) and \(A-B\), where the elements in the \(k\)-th column of matrix \(A+B\) are given by

\[
(A+B)_{jk} = T_{jk} + T_{j,k,2n-k+1}
\]

\[
= T_{1,k+j} + T_{1,2n+2-j-k} \text{ if } j \leq k
\]

\[
= T_{j-k+1,1} + T_{2n+2-j-k,1} \text{ if } j > k
\]

for \(k=1,\ldots,n\).

Now consider constructing software that computes the eigenvalues of a real symmetric Toeplitz matrix \(T\) of even order \(n\) by using a canned subroutine that computes the eigenvalues of any real symmetric matrix, where by definition (6)
Given the first row T_1 of matrix T, two possible structured FORTRAN subroutines that compute matrix T's eigenvalues EIG using a library subroutine $EIGRS$ for the eigenvalues of a real symmetric matrix are

CODE 6

```fortran
SUBROUTINE TOPEIG(TR1,N,T,EIG)
DIMENSION T(N,N),EIG(N),TR1(N)
DO 20 K = 1,N
   DO 10 J = 1,N
      IF(J.LE.K)THEN
         L1 = K - J + 1
      ELSE
         L1 = J - K + 1
      END IF
      T(J,K) = TR1(L1)
10   CONTINUE
20   CONTINUE
CALL EIGRS (T,N,EIG)
RETURN
END
```

CODE 7

```fortran
SUBROUTINE TOPEIG(TR1,N,NDIV2,APLUSB,EIG)

C INPUT: TR1 = FIRST ROW OF TOEPPLTZ MATRIX
C N = ORDER OF TOEPPLTZ MATRIX
C NDIV2 = N/2, THE ORDER OF SCRATCH MATRIX APLUSB
C APLUSB = SCRATCH MATRIX OF ORDER NDIV2
C OUTPUT: EIG = ARRAY CONTAINING THE N EIGENVALUES

DIMENSION APLUSB(NDIV2,NDIV2),EIG(N),TR1(N)
SIGN = 1.0
DO 40 I = 1,2
   IPOINT = (I - 1)*NDIV2 + 1
   DO 20 K = 1,NDIV2
      DO 10 J = 1,NDIV2
         L2 = N + 2 - K - J
         IF(J.LE.K)THEN
            L1 = K - J + 1
         ELSE
            L1 = J - K + 1
         END IF
         APLUSB(J,K) = TR1(L1) + TR1(L2)*SIGN
10   CONTINUE
20   CONTINUE
CALL EIGRS (APLUSB, NDIV2, EIG(IPOINT))
SIGN = -1.0
40   CONTINUE
RETURN
END
```
Code 6 computes the eigenvalues of T directly, while Code 7 performs the mathematically equivalent computation of finding the eigenvalues of the smaller symmetric matrices A+B and A-B. Code 7 is computationally superior to Code 6, since it requires 75% less storage for matrices and executes 75% faster when matrix T is of sufficiently large order [3,4]. However, knowing only definition (13) of a real symmetric Toeplitz matrix T and that Code 7 computes the eigenvalues EIG of matrix T (if it is of even order n) by using a canned eigenvalue routine EIGRS for any real symmetric matrix, a maintenance programmer may be puzzled by Code 7 and tempted to replace it with the shorter and more comprehensible (but less efficient) Code 6.

As a final example, consider approximating the scaled Airy function \(\exp(z \tau a) \text{Ai}(z) \) for values of \(z \) of large magnitude by evaluating a partial sum of the asymptotic series [5]

\[
\exp(z \tau a) \text{Ai}(z) \sim (\pi \ z /2) \sum_{k=0}^{\infty} (-1)^k \frac{a z \tau a}{k}
\]

where
\[
z \tau a = z /1.5, \ |\arg z| < \pi
\]
\[
c = 1, \ c /c = k/2 + 5(k+1) /72
\]

Writing
\[
G = (-1)^k \frac{a z \tau a}{k}
\]

we see that the terms of the sum in (14) can be generated recursively:
\[
G = -\left(\frac{c}{c} \right) z \tau a \ G \quad (k = 0,1,2, \ldots)
\]

and, a fortiori,
\[
\abs(G) = \abs(z \tau a) \prod_{j=0}^{k} \abs(\frac{c}{c}) \times 2^k \abs(z \tau a) 5/72
\]

For any specific value of \(z \), the approximation to the scaled Airy function having maximum accuracy is obtained by evaluating the partial sum

\[
\sum_{k=0}^{n} G_k
\]

where \(G_k \) is the first term encountered in the series for which

\[
\abs(G) > \abs(G)
\]

12
By (16), condition (19) is equivalent to
\[
\frac{c}{c} > m = \text{abs}(z \tau a) \quad \text{n+1} > \text{n}
\] (20)

Therefore, the first value of n for which (19) holds is
\[
n = \left[\frac{(9m + 9m + 1)}{3 + m - 0.5}\right] - 1
\] (21)

where [x] is the smallest integer greater than or equal to x. However, if m is sufficiently large computation of G will cause computer underflow well before \(k = n\), and the evaluation of (18) out to G then becomes impractical. Consequently, in a practical computation, (18) should be evaluated out to G or the G with the smallest magnitude that does not cause computer underflow, whichever comes first.

The largest value of m for which (18) can be summed out to G without any of the G underflowing depends on the smallest positive computer number s. A good approximation to this value of m is obtained by setting the approximation (17) for \(\text{abs}(G_{k+1})\) equal to s with \(k = 2m\), applying Stirling's asymptotic formula for factorials and then solving the resulting equation for m. This gives the equation
\[
m = -\ln(m)/4 - \ln(7.2\pi^n)/2
\] (22)

whose solution is \(m^*\), the limit of the rapidly convergent sequence
\[
m_j = -\ln(m_{j-1})/4 + m_{j-1}, \quad m_0 = -\ln(7.2\pi^n)/2
\] (23)

In other words, for any given value of z for which m does not exceed \(m^*\), (18) can be summed out to G without any of the G underflowing; if m exceeds \(m^*\), (18) can be summed out to the term whose index \(k\) is \(\left[2m^*f - (14.4m)\right]\) just short of G underflowing for a positive value of \(f < 1\).
To find f we proceed in the same way that we did to find m^*, but we set the approximation (17) equal to s with $k = 2m^*f$. This gives

$$f = \frac{((f + 1/4m^*)\ln(f) - c)}{\ln(em/m^*)}$$

$$c = (1/2m^*)\ln(7.2sm / \sqrt{\pi m^*})$$

whose solution is the limit of the sequence

$$f_j = \frac{((f_{j-1} + 1/4m^*)\ln(f_{j-1}) - c)}{\ln(em/m^*)}$$

for an initial value $f < 1$. If $f = 1/\log(m)$, then f gives an adequate approximation to f.

To summarize, evaluating the asymptotic series until (19) is satisfied or G underflows is similar to evaluating the series out to the term whose index k has the value $[2m^*f-(14.4m)]$, where $f = m/m^*$ if $m \leq m^*$.

For any given z, the latter method provides an apriori estimate of the optimal number of terms of the series to sum, eliminating the need for the comparison test (19) during the summation of the series.

Therefore, two possible structured FORTRAN subprograms for evaluating the asymptotic series are

```
FUNCTION SUM (ZTA)
COMPLEX*16 SUM, ZTA, GK, RZTA
DOUBLE PRECISION ABSGK, ABSGK1, S, FACTOR
DATA S/2.94D-39/
SUM = DCMPLX(0.0D0, 0.0D0)
K = 0
GK = DCMPLX(1.0D0,0.0D0)
RZTA = GK / ZTA
ABSGK1 = 1.0D0
C
DO UNTIL ( ABSGK1.GE.ABSGK .OR. ABSGK1.LE.S)
   SUM = SUM + GK
   FACTOR = 0.5D0 * K + 5.0D0 / (K + 1) / 72.0D0
   K = K + 1
   GK = - FACTOR * RZTA * GK
   ABSGK = ABSGK1
   ABSGK1 = CDABS(GK)
   IF ( ABSGK1.LT.ABSGK .AND. ABSGK1.GT.S)GO TO 5
CONTINUE
RETURN
END
```
FUNCTION SUM (ZTA)
COMPLEX*16 SUM, ZTA, GK, RZTA
DOUBLE PRECISION FACTOR
REAL MSTAR, EOMSTR, TMSTAR, R4MSTR, CLN, M, F, C, D
DATA MSTAR/42.721, TMSTAR/85.441, EOMSTR/0.063630191/
DATA CLN/-89.1980271, R4MSTR/5.8520599E-031
M = CDABS(ZTA)
IF(M .GT. MSTAR) THEN
 F = 1.0/ALOG10(M)
 C = (CLN + ALOG(M))/TMSTAR
 D = ALOG(EOMSTR*M)
 F = ((F + R4MSTR)*ALOG(F) - C)/D
 N = ((F + R4MSTR)*ALOG(F) - C)/D
 N = 2.0 * (MSTAR * F + 0.5) - .069444444 / M
ELSE
 N = 2.0 * (M + 0.5) - .069444444 / M
END IF
SUM = DCMPLX(1.0D0, 0.0D0)
GK = SUM
RZTA = GK / ZTA
DO 100 K = 0, N-1
 FACTOR = 0.5D0 * K + 5.0D0 / (K + 1) / 72.0D0
 GK = - FACTOR * RZTA * GK
 SUM = SUM + GK
100 CONTINUE
RETURN
END

Code 8 terminates summation of the series when either (19) is satisfied or a term of the series underflows s, while Code 9 terminates when an apriori estimate of the summation index is reached for which either one of these conditions is satisfied. Although Code 9 is longer than Code 8, the VAX 11/780 executes Code 9 30% faster than Code 8; in fact, if an initial value for the sequence (25) were found so that f would give an adequate approximation to f, then Code 9 would execute approximately 40% faster than Code 8. In any event, knowing only that the purpose of these codes is to evaluate the sum (18) for a given value of zta until either (19) is satisfied or G underflows s, without additional information a maintenance programmer would have difficulty comprehending how this is accomplished by the more efficient Code 9.

CONCLUSION

Although structured coding promotes software clarity by highlighting the flow of control of the code, the result of searching for a computational method that hopefully performs the same function optimally may demote software comprehensibility. Since the algorithm that is finally implemented can depart significantly from the formula that was used originally to define the purpose of the code, the algorithm must be documented sufficiently or else the code may be difficult to maintain effectively.
REFERENCES

2. Marvin Goldstein, "Efficient Matrix Addressing On Virtual Memory Machines," NUSC TM No. 801044, 1 April 1980

MATHEMATICALLY EQUIVALENT, COMPUTATIONALLY NON-EQUIVALENT FORMULAS
AND SOFTWARE COMPREHENSIBILITY

TM 851062
Marvin J. Goldstein
Surface Ship Sonar Department
22 May 1985
UNCLASSIFIED

DISTRIBUTION LIST

Code 00 CAPT Ailes 3233 R. Christman
 01 E.L. Messere 33 L. Freeman
 01A R. Moore 3301 T. Bateman
 01Y Dr. J. Short 33A B. Cole
 10 Dr. W. VonWinkle 33A3 Dr. W. Roderick
 101 Dr. E. Eby 33B3 D. Counsellor
 101 F. Weigle 3311 J. Higgs
 02 Dr. L. Goodman 3312 C. Becker
 0211 Dr. K. Lima 3312 P. Saikowski
 021311 Dr. C. Kindilien 3313 J. Gregor
 021312 G. Hill 3313 D. Aker
 20 W. Clearwaters 3314 P. Anchors
 32 Dr. J. Kingsbury 3314 N. Suliniski
 3211 J. O'Sullivan 3314 D. Fingerman
 3211 W. Babson 3314 R. Molino
 3211 A. Lesick 3314 Dr. C. Carter
 3211 Dr. N. Owsley 3314 Dr. R. Dwyer
 3212 S. Dzerovych 3314 Dr. A. Nuttall
 3212 Dr. J. Ianniello 3314 W. Goldman
 3212 J. Pearson 3314 I. Cohen
 3212 J. Ferrie 3314 R. Johnson
 3213 S. Kessler 3321 J. Sikorski
 3213 W. Axtell 333 P. Stahl
 3213 R. Cox 3331 W. Goldman
 3213 D. Rawson 3331 I. Cohen
 3213 L. C. Ng 3331 R. Johnson
 3213 J. Sanchis 3331 J. Sikorski
 3213 G. Connolly 3331 P. Stahl
 3232 Dr. R. Streit 3331 W. Goldman
 3232 B. Helme, Jr. 3331 I. Cohen
 3233 Dr. H. Schloemer 3331 R. Johnson
 3233 S. Ko 3332 J. Sikorski
 3233 Dr. W. Strawderman 3332 P. Stahl
 3234 D. T. Porter 3332 W. Goldman
 325 W. Coggins 3332 I. Cohen
 325 J. Shores 3332 R. Johnson
 3251 D. Daros 3332 J. Sikorski
 3251 C. Bowman 3332 P. Stahl
 3251 P. Miner 3332 W. Goldman
 3252 T. Anderson 3332 I. Cohen
 3252 R. Ionata 3332 R. Johnson
 3253 M. Kuznitz 3332 J. Sikorski
 3253 J. Munoz 3332 P. Stahl
 3253 R. Leask 3332 W. Goldman
 3253 D. Yarger 3332 I. Cohen
 3253 M. Goldstein (15) 3332 R. Johnson
 3253 W. Kanabis 3332 J. Sikorski
 3253 H. Sternberg 3332 P. Stahl
 3253 R. Deavenport 3332 W. Goldman
 3253 Dr. D. Wood 3332 I. Cohen
 3253 R. Drinkard 3332 R. Johnson
 3253 J. Nordquist 3332 J. Sikorski
 3253 E. Robinson 3332 P. Stahl
 3253 E. Jensen 3332 W. Goldman
 3253 C. Turner 3332 I. Cohen
 3253 L. Petitpas 3332 R. Johnson
3333 C. Brown 70 G. Bain
3333 G. Brown 701 G. Elias
3333 F. Farmer 72 G. Dagliere
3333 E. Montavon R. Wilson
3333 J. Prentice S. Schneller
3333 W. Sternberg J. Auwood
3333 W. Wachter T. Wheeler
3333 L. Walker P. Breslin
3334 J. Hall A. Alfiero
3334 E. Gannon J. Gribbin
3334 V. Edwards 73 S. Capizzano
3334 D. Klingbeil R. Pingree
3334 F. McMullen D. Quigley
34 Dr. D. Dence 74 M. Lee
34 J. Katan C. Brockway
34 Dr. D. Fessenden B. Sullivan
34 K. Hafner R. Hoy
34 J. Casey A. Blau
34 A. Bruno T. Perella
34 D. Dixon W. Cote
35 D. Cardin
35 T. Conrad
35 L. Cabral
36 Dr. J. Sirmalis
36 J. Griffin
36 D. Blundell
36 M. Lydon
36 S. Wax
36 S. Ashton
36 R. McMahon
36 S. Meyers
36 K. Padolino
37 C. Curtis
37 Q. Huynh
38 J. Kyle
38 A. Carlson
401 J. Clark
401 Dr. A. Kalinowski
401 Dr. R. Kasper
401 R. Manstan
401 R. Munn
401 C. Nebelung
401 Dr. J. Patel
401 B. Radley
401 A. Shigematsu
401 Dr. M. Tucchio
402 M. Berger
4111 S. Horvitz
4331 B. Antrim
4331 S. Walsh
434 K. Steele
434 G. Lussier
60 Dr. J. Cohen