Clinical paper

Oxygen transport characterization of a human model of progressive hemorrhage

Kevin R. Warda, Mohamad H. Tiba, Kathy L. Ryan, Ivo P. Torres Filho, Caroline A. Rickards, Tarryn Witten,
Babs R. Sollera, David A. Ludwiga, Victor A. Convertinob

a Virginia Commonwealth University Reanimation Engineering Shock Center (VCURES), 1201 East Marshall Street, P.O. Box 980401, Richmond, VA 23298, United States
b Virginia Commonwealth University Department of Emergency Medicine, 1201 East Marshall Street, P.O. Box 980401, Richmond, VA 23298, United States
c Virginia Commonwealth University Department of Physiology and Biophysics, 1101 East Marshal Street, P.O. Box 980551, Richmond, VA 23298, United States
d Virginia Commonwealth University Center for the Study of Biologic Complexity, 1000 West Cary Street, P.O. Box 842030, Richmond, VA 23284, United States
e U.S. Army Institute of Surgical Research (USAISR), 3400 Rawley E. Chambers Ave., Ft. Sam, Houston, TX 77234, United States
f Department of Anesthesiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, United States
g Department of Pediatrics, Division of Clinical Research, Miller School of Medicine, University of Miami, P.O. Box 016820, Miami, FL 33101, United States
h Department of Emergency Medicine, 1201 East Marshall Street, P.O. Box 980401, Richmond, VA 23298, United States

A R T I C L E I N F O

Article history:
Received 30 November 2009
Received in revised form 18 March 2010
Accepted 24 March 2010

Keywords:
Hemorrhage
Lower body negative pressure
Trauma
Tissue oxygenation
Combat casualty
Monitoring

A B S T R A C T

Background: Hemorrhage continues to be a leading cause of death from trauma sustained both in combat and in the civilian setting. New models of hemorrhage may add value in both improving our understanding of the physiologic responses to severe bleeding and as platforms to develop and test new monitoring and therapeutic techniques. We examined changes in oxygen transport produced by central volume redistribution in humans using lower body negative pressure (LBNP) as a potential mimetic of hemorrhage.

Methods and results: In 20 healthy volunteers, systemic oxygen delivery and oxygen consumption, skeletal muscle oxygenation and oral mucosa perfusion were measured over increasing levels of LBNP to the point of hemodynamic decompensation. With sequential reductions in central blood volume, progressive reductions in oxygen delivery and tissue oxygenation and perfusion parameters were noted, while no changes were observed in systemic oxygen uptake or markers of anaerobic metabolism in the blood (e.g., lactate, base excess). While blood pressure decreased and heart rate increased during LBNP, these changes occurred later than the reductions in tissue oxygenation and perfusion.

Conclusions: These findings indicate that LBNP induces changes in oxygen transport consistent with the compensatory phase of hemorrhage, but that a frank state of shock (delivery-dependent oxygen consumption) does not occur. LBNP may therefore serve as a model to better understand a variety of compensatory physiological changes that occur during the pre-shock phase of hemorrhage in conscious humans. As such, LBNP may be a useful platform from which to develop and test new monitoring capabilities for identifying the need for intervention during the early phases of hemorrhage to prevent a patient’s progression to overt shock.

© 2010 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Hemorrhage remains the greatest threat to survival in the first 24h after traumatic injury, accounting for approximately 50% of combat and 40% of civilian trauma mortality. In 2000, the...
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204. Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 AUG 2010</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen transport characterization of a human model of progressive hemorrhage</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
<td></td>
</tr>
<tr>
<td>UU</td>
<td></td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
level compared to humans (e.g., skin thickness, limb length and temperature regulation). These differences make development of monitoring systems (especially noninvasive ones) challenging. Development of experimental models of hemorrhage using humans that are void of anesthesia could assist in understanding the human physiologic responses to hemorrhage and in developing better monitoring.

The United States Army Institute of Surgical Research (USAISR), along with others, has pioneered lower body negative pressure (LBNP) as a model to study the effects of central hypovolemia in conscious humans. To date, this work has focused on central and systemic hemodynamics and autonomic responses produced by LBNP, with comparisons made to hemorrhage in animals or mild to moderate blood removal in humans. While findings such as changes in cardiac output and mean arterial pressure are similar to hemorrhage, oxygen transport physiology has not been characterized in the model, especially as it relates to tissue oxygenation and microvascular perfusion. This study sought to characterize the metabolic response to progressive LBNP to understand its utility as a model of human hemorrhage and platform to develop new monitoring technologies that may assist in triage and treatment of hemorrhaging patients.

2. Methods

2.1. Study design, setting, and population

This was a prospective study performed at the USAISR in San Antonio, TX. Data analysis took place at the USAISR, the Virginia Commonwealth University (Richmond, VA), and the University of Massachusetts Medical School (Worcester, MA). The Institutional Review Boards of all three institutions approved the protocol. A total of 20 healthy, normotensive, nonsmoking subjects (9 males, 11 females) volunteered to participate in this study (age, 23 ± 4 years; height, 171 ± 11 cm; weight, 69 ± 11 kg; mean ± SD). A medical history and physical examination were obtained on each subject prior to study. Female subjects underwent urine testing to exclude pregnancy. Subjects were asked to refrain from alcohol, exercise, stimulants and other non-prescription drugs 24 h prior to testing and gave written informed consent.

2.2. Study protocol

Subjects were supine with lower extremities (from below the iliac crest) placed within the LBNP chamber (Fig. 1). A neoprene skirt provided an airtight seal between the subject and the chamber. The protocol consisted of a 5-min rest period (0 mmHg) followed by 5 min of chamber decompression to −15, −30, −45, and −60 mmHg and additional increments of −10 mmHg every 5 min until the onset of hemodynamic decompensation. Hemodynamic decompensation was identified in real time by the attending investigator as a precipitous decrease in systolic blood pressure (SBP) (>15 mmHg), or progressive diminution of SBP <70 mmHg, and/or the presence of pre-syncopal symptoms expressed by the subject such as gray-out, sweating, nausea, or dizziness.

2.3. Instrumentation

Continuous heart rate (HR) was measured from a standard electrocardiogram (ECG). Continuous, beat-by-beat blood pressure was measured noninvasively using an infrared finger photoplethysmograph (Finometer Blood Pressure Monitor, TNO-TPD Biomedical Instrumentation, Amsterdam, The Netherlands). The Finometer blood pressure cuff was placed on the middle finger of the left hand laid at heart level. Excellent estimates of directly measured intra-arterial pressures have been demonstrated with this device.

Mean arterial pressure (MAP) was calculated by dividing the sum of SBP and twice diastolic blood pressure by three. Beat-to-beat stroke volume (SV) was calculated from the blood pressure waveform as described previously. Cardiac output (Q) was calculated as the product of HR and SV. Peripheral arterial hemoglobin oxygen saturation (SpO2) was measured using a finger pulse oximeter (BCI Capnocheck Plus, Smiths Medical Inc., Waukesha, WI). The blood pressure waveform and ECG were sampled at 500 Hz and recorded directly to data acquisition software (WINDAQ, Dataq Instruments, Akron, OH), then imported into data analysis software (WinCPRS, Absolute Aliens, Turku, Finland).

2.4. Blood gasses

A 19-gauge catheter was inserted into an antecubital vein of the right arm for collection of blood samples during pre-LBNP baseline, and during the last 30 s of each LBNP level. The catheter was flushed with saline after each blood draw, with the first 1 ml of blood drawn discarded. Each sample (~3 ml), was immediately transferred to a chilled tube containing heparin and subsequently used for measures of venous pH, hemoglobin oxygen saturation (SO2), hematocrit (Hct), hemoglobin concentration ([Hb]), lactate and base excess with a blood gas analyzer (AVL Omni Blood Gas Analyzer, AVL Scientific, Roswell, GA).

![Fig. 1. Subject in the LBNP device (A) and the LBNP protocol (B).](image-url)
2.5. Oxygen consumption (VO2)

Subjects breathed through a face mask attached to a metabolic cart (Vmax-29 Metabolic Cart, SensorMedics Corp., Yorba Linda, CA, USA) for calculation of oxygen consumption (VO2) from measurements of fractional inspired and expired oxygen and ventilation volume corrected for temperature and pressure. Measurements were taken for 2 min during each LBNP level, and 1-min averages were calculated for subsequent analysis.

2.6. Oxygen delivery (DO2)

DO2 was determined by the following equation: $DO_2 = Q \times CaO_2$

where $CaO_2 = [Hgb] (g/dl) \times 1.36 \times SaO_2$. SpO2 was used as a surrogate of SaO2. The partial pressure of arterial oxygen was not considered in the calculation since its contribution is small, it was not measured, and subjects were breathing room air.

2.7. Tissue oxygenation measurements

Muscle tissue SO2 was measured using a near infrared spectroscopy (NIRS) monitor developed by personnel at the University of Massachusetts Medical School and assembled by Luxtec Corporation (West Boylston, MA, USA). The device sensor was placed over the right forearm flexor digitorum profundus muscle. NIRS utilizes differential absorption spectroscopy to determine proportions of oxy- and deoxyhemoglobin within a volume of tissue based on the compartmentalization of blood in tissues, where 70–80% exists in venules, with the remaining 10–20% existing in arterioles and capillaries. Thus NIRS signals emanate mainly from the post-extraction (venous) compartment of tissues. NIRS has been demonstrated to be capable of detecting tissue oxygenation changes due to hemorrhage.

Acquired tissue spectra were corrected for interference from skin pigment and fat. Muscle SO2 and pH were calculated from the corrected spectra using previously determined algorithms. Data were collected continuously with the last 3 min of data at each LBNP level used to report the values of muscle SO2 (as percent hemoglobin saturated with oxygen) and pH.

2.8. Oxygen extraction ratio (OER)

Both systemic and tissue OER were examined to determine the degree to which tissues extract available oxygen in order to meet utilization demands. We determined OER based on the formula: $SaO_2 - SvO_2/SaO_2$. SpO2 was used in place of SaO2. Venous hemoglobin oxygen saturation (SvO2) from the antecubital vein was used to determine OER for the forearm since it was considered a major source of venous effluent. It was also used as a reflection of systemic OER. NIRS muscle SO2 values were used when determining muscle OER.

2.9. Microcirculation analysis

Side stream dark field microscopy was used to measure functional capillary density (FCD) of the sublingual mucosa, as FCD reflects changes in microvascular perfusion. This assessment was performed using video microscopy (MicroScan Microvision Medical, Inc., Wallingford, PA) providing 5× magnification, with probe placement in the sublingual fossa. The 500–600 nm light used allows visualization of mucosal vasculature. The device was connected to a DV player (JVC BR-DV3000: JVC, Whitlock Group, Richmond, VA) recording at 30 frames/s.

To calculate FCD, video was imported into the manufacturer’s software (MAS/SDF, MicroVision Medical, Inc., Amsterdam, The Netherlands). After filtering and rejecting large vessels (over 25 μm in diameter), the software calculates the ratio of the total length of the remaining vessels over the total field area. This ratio represents FCD. Technicians performing FCD analysis were blinded to the sequence of the clips and LBNP level.

2.10. Statistical analysis

Subjects reached hemodynamic decompensation (i.e., maximal LBNP tolerance) at different LBNP levels, based on their individual physiological responses. Because these responses are the same at hemodynamic decompensation independent of the LBNP level at which an individual subject reaches this point, we chose to normalize each individual’s data by re-apportioning their responses to six equal fractions, between 0% LBNP tolerance (baseline) and 100% LBNP tolerance, the level at which the LBNP protocol was terminated. This approach avoids attrition of sample size as the individual absolute levels of LBNP progressed and considers the data from all subjects relative to their maximum capacity for LBNP tolerance.

Fig. 2. Cardiovascular responses during progressive LBNP. Q, cardiac output; HR, heart rate; MAP, mean arterial pressure. Data are means ± SE; n=20. *P ≤ 0.013 compared to baseline.
Table 1
Venous blood values during lower body negative pressure (LBNP).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>% of maximal LBNP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>40.3 ± 0.8</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>13.5 ± 0.3</td>
</tr>
<tr>
<td>SO2 (%)</td>
<td>73.7 ± 2.8</td>
</tr>
<tr>
<td>pH</td>
<td>7.37 ± 0.00</td>
</tr>
<tr>
<td>Lactate (mmol/L)</td>
<td>0.96 ± 0.06</td>
</tr>
<tr>
<td>Base excess (mmol/L)</td>
<td>−0.06 ± 0.37</td>
</tr>
</tbody>
</table>

Means ± SEM.

*P ≤ 0.029 compared to baseline values.

The experimental design was a single group repeated measures design in which the six LBNP stages were applied to each subject over time. The statistical model was therefore mixed with the autocorrelation structure of the repeated measurement modeled under the most conservative conditions. Exact P values were calculated and reflected the probability of variation in the LBNP means given only experimental noise. Although the experiment-wise distribution of the F statistics generated from the statistical tests performed on the metabolic dependent variables was evaluated and considered, no formal adjustment to the P values was made at the test-wise level. Bonferroni post hoc tests were performed when the overall test for mean time differences resulted in P values <0.05. Results of statistical tests (i.e., P values) reported in the text are associated with overall differences across the six time periods of LBNP. When appropriate, follow-up pairwise testing comparing baseline values to each of the subsequent five LBNP stages are presented in tables and figures. Standard errors present in figures and tables are unadjusted for between subject differences.

3. Results

Table 1 contains blood values obtained during LBNP. SvO2 decreased (P < 0.0049) across LBNP levels. Venous hematocrit and hemoglobin both increased during the final LBNP stage (P < 0.0079) while pH, lactate, and base excess showed no trend in their mean responses to LBNP (P > 0.27). There was a small but statistically significant increase in lactate found to occur at the 60% LBNP level. However, this was not sustained at higher LBNP levels and was not considered a clinically significant elevation.

Cardiac output progressively decreased (P < 0.004) as LBNP increased, despite a progressive increase (P = 0.0001) in HR (Fig. 2A and B). Although MAP decreased progressively across all levels of LBNP (P = 0.0001), it remained within clinically normal limits until the 100% maximal LBNP level when pronounced hypotension occurred (Fig. 2C). SpO2 was maintained at levels greater than or equal to 97% (data not shown).

Fig. 3 shows representative FCD images of a single subject that depict progressive decreases in tissue perfusion. The average FCD for all subjects decreased (P = 0.0021) progressively with the decrease in DO2 (Fig. 4A and E). At the local tissue level, muscle pH and SO2 progressively decreased (Fig. 4B and C), while muscle OER (Fig. 4D) increased (P ≤ 0.0118). On the systemic level (Fig. 4E and F), DO2 decreased while OER increased (P ≤ 0.005). This resulted in maintenance of VO2 and thus no sustained increase in systemic lactate (Fig. 4G and H). Post hoc statistical tests suggested that FCD decreased earliest (at 20% LBNP tolerance), prior to changes in muscle SO2 and OER (60% LBNP tolerance), while muscle pH only decreased at 80 and 100% LBNP tolerance.

4. Discussion

Little is known concerning the progression of human physiologic responses to hemorrhage, mainly due to the inability to perform continuous monitoring of numerous hemodynamic, auto-
Fig. 4. Metabolic responses to progressive LBNP at the tissue level (panels A–D) and the systemic level (panels E–H). FCD, in sublingual mucosa; muscle SO2, oxygen saturation in the flexor digitorum profundus muscle of the right forearm; OER, oxygen extraction ratio; DO2, systemic oxygen delivery; VO2, systemic oxygen consumption. Data are means ± SE; n = 20, except for FCD where n = 16, VO2 and muscle SO2, pH and OER where n = 18. *P ≤ 0.047 compared to baseline.

nomic, and metabolic responses during traumatic hemorrhage, particularly the early pre-shock phase. In this study, we were able to comprehensively monitor simulated hemorrhage in humans by systematically reducing central blood volume in a controlled experimental setting. Our results demonstrate that LBNP produces progressive tissue vasoconstriction and concomitant increases in OER but that an overt state of shock does not occur. These responses are similar to those occurring during the early pre-shock or compensatory phase of hemorrhage.22,24–27 The use of LBNP as an experimental model may therefore both enhance the understanding of the human physiologic response to early hemorrhage and provide a platform to conceive, test, and validate new monitoring methods.

Previous studies have attempted to estimate blood volume loss to LBNP levels by various methods including comparing parameters such as stroke volume and symptoms between LBNP and blood withdrawal. These studies indicate that blood redistribution in response to LBNP is linear and equivalent to actual blood removal at the following levels: LBNP levels 10–20 mmHg = 400–500 ml removal; LBNP levels 20–40 mmHg = 500–1000 ml removal; LBNP levels >40 mmHg = >1000 ml removal.10,12,28–30 Recently, data from the same 20 subjects that participated herein were used in computer simulations to support the blood loss ranges above as well as several of the metabolic responses measured in this study.31 In a manner similar to that reported during actual hemorrhage, MAP was preserved during the early phase of central hypovolemia despite a dramatic reduction in cardiac output (Fig. 2).8

The classic definition of shock is one where tissue DO2 does not meet tissue VO2.32,33 This is traditionally signified by reductions in VO2 and subsequently the presence of increasing systemic levels of lactate.33,34 The VO2, systemic lactate, and base excess responses to LBNP in this study do not support a state of delivery-dependent VO2 in which critical DO2 was passed.25,33–35 Instead, it appears that physiologic compensation involving increased oxygen extraction occurred to maintain tissue VO2, just as in the early stages of hemorrhage.24–27

Indeed, a reduction in tissue DO2 did occur as evidenced by progressive reductions in muscle tissue SO2 and visually confirmed by
reductions in oral mucosa FCD. As a result of reduced tissue DO2, we would expect a greater percentage of oxygen to be extracted by tissues resulting in reductions in tissue SO2 and thus progressively increased local and global OER consistent with hemorrhage. In the absence of changes in VO2 and lactate, we conclude that the LBNP model reflects a phase of hemorrhage in which increased oxygen extraction is proportional, and subsequently compensatory, to the reduction in DO2 (i.e., the “pre-shock” stage).

An unaltered systemic [Hb] and SpO2 throughout LBNP indicates that the significant drop in DO2 was due solely to reductions in cardiac output. Increased systemic hematocrit at the final stage of LBNP is consistent with hemococoncentration known to occur in animal models of hemorrhage where concomitant fluid resuscitation does not take place. The early and sustained reductions in microvascular perfusion are noted by FCD analysis (e.g., Fig. 3). Taken together, these findings provide confirmation that the volume redistribution produced by LBNP occurs in a manner consistent with hemorrhage and other hypoperfusion states where end-organ flow is diminished and reflex-mediated compensatory vasoconstriction occurs. It is important to note that the metabolic changes measured were noted in multiple tissues. These include a large portion of a limb, skeletal muscle, and oral mucosa indicating that the response produced by LBNP is “global” as would be expected with hemorrhage.

As previously demonstrated in animal models of hemorrhage, the human physiologic response to LBNP is variable since not all subjects responded in the same way to a similar absolute magnitude of LBNP. This is an important element of the model, since it may reflect a novel approach to understand the physiology of why some individuals withstand greater degrees of hemorrhage than others. Once these mechanisms are understood, it may be possible to design new therapeutic interventions to prolong tolerance, thus increasing the time until physiologic collapse and extending the therapeutic window. For example, this laboratory has shown that use of inspiratory resistance delays the onset of symptoms associated with central hypovolemia produced by LBNP by increasing venous return and maintaining cardiac output for longer periods. Additionally, new opportunities exist to develop monitoring modalities that allow for ultra-early prediction of eventual collapse or the ability to determine hemorrhage severity and the adequacy of treatment. In this regard, LBNP has been used to compare new technologies to detect tissue hypoperfusion and has shown significant performance differences between two NIRS monitoring technologies. To date, 150 subjects have safely undergone the current LBNP protocol in this laboratory without complications.

This model is not without limitations. Although humans are used in a setting without the confounding effects of anesthesia, there is no tissue injury and pain. Since traumatic hemorrhage is usually accompanied by significant tissue injury, the presence of such factors could result in more complex variations in LBNP responses than those observed in this study. Additionally hypoxemia, often present after trauma from hypovolemia or lung injury, was not incorporated into this model.

Despite these limitations, the use of LBNP in humans to model the early compensatory stages of hemorrhage should prove to be a valuable addition to animal hemorrhage models. Specifically, new understanding of individual variations to central volume loss and in the monitoring of blood loss may result in new therapeutic and diagnostic targets.

5. Conclusion

Graded LBNP in humans results in a physiologic state consistent with early hemorrhage prior to the onset of shock as evidenced by dynamic changes in a number of tissue perfusion parameters. LBNP thus may be a valuable platform for the development of new diagnostic strategies for use in the setting of hemorrhage prior to the onset of shock when it may be too late to implement effective treatments.

Conflict of interest statement

Dr. Soller is a co-founder of Reflectance Medical Inc., which has rights to the NIRS technology used in this study.

Acknowledgments

This work was funded by the U.S. Army Medical Research and Material Command Combat Casualty Care Research Program (Grant: 05-0033-02) and the National Space Biomedical Research Institute under NASA Cooperative Agreement NCC 9-58.

The views expressed herein are the private views of the authors and are not to be construed as representing those of the Department of Defense or the Department of the Army.

References

