Final Report: Study of the Neurophysiology of Central Fatigue

1. REPORT DATE (DD-MM-YYYY) 05-11-2014
2. REPORT TYPE Final Report
3. DATES COVERED (From - To) 1-Jul-2010 - 30-Jun-2014

4. TITLE AND SUBTITLE Final Report: Study of the Neurophysiology of Central Fatigue

5a. CONTRACT NUMBER W911NF-10-1-0192
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER 611102
5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

6. AUTHORS Benzi KLuger, Mingzhou Ding, Donald Rojas, Lauren Krupp, Roger Enoka

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES
University of Colorado - Denver
Mail Stop F428, Anschutz Medical Campus, Building 8
13001 E. 17th Place, Room W1126
Aurora, CO 80045 -2571

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSOR/MONITOR’S ACRONYM(S) ARO
11. SPONSOR/MONITOR’S REPORT NUMBER(S) 56700-LS.6

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation.

14. ABSTRACT
Specific Aims:
1) To identify and characterize the functional neuroanatomic networks most strongly correlated with objective cognitive fatigue using event related potentials (ERPs).
2) To determine the neurophysiologic mechanisms underlying objective cognitive fatigue using the variable signal plus ongoing activity (VSPOA) model.
3) To investigate the relationship of GABAergic and glutamatergic neural transmission to objective cognitive

15. SUBJECT TERMS
cognitive, fatigue, fatigability, magnetoencephalography, transcranial magnetic stimulation

16. SECURITY CLASSIFICATION OF:
a. REPORT UU
b. ABSTRACT UU
c. THIS PAGE UU

17. LIMITATION OF ABSTRACT UU
15. NUMBER OF PAGES
19a. NAME OF RESPONSIBLE PERSON
Benzi Kluger
19b. TELEPHONE NUMBER 303-724-4400

Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18
Report Title
Final Report: Study of the Neurophysiology of Central Fatigue

ABSTRACT

Specific Aims:
1) To identify and characterize the functional neuroanatomic networks most strongly correlated with objective cognitive fatigue using event related potentials (ERPs).
2) To determine the neurophysiologic mechanisms underlying objective cognitive fatigue using the variable signal plus ongoing activity (VSPOA) model.
3) To investigate the relationship of GABAergic and glutamatergic neural transmission to objective cognitive fatigue and network pathology.

Results of Findings:
1) We have developed a novel unifying taxonomy to clarify and standardize fatigue and fatigability terminology for research. (Manuscript published)
2) We have found that intraindividual variability (performance variability) is a more sensitive indicator of behavioral fatigability than change in response time or accuracy. (Manuscript published)
3) We have found that behavioral and physiological markers of cognitive control are impacted by prolonged cognitive task performance and mediate many performance changes. (Abstract published, manuscript under review)
4) Single trial ERP analyses reveal that noise (jitter) and amplitude changes both contribute to reductions in ERPs seen with prolonged cognitive performance. (manuscript in preparation)
5) Slowing of oscillatory activity, particularly in alpha frequencies, occurs over prolonged task and correlates with task performance. (manuscript in preparation)
6) We have identified ERP markers of compensation to fatigue. (manuscript in preparation)

Enter List of papers submitted or published that acknowledge ARO support from the start of the project to the date of this printing. List the papers, including journal references, in the following categories:

(a) Papers published in peer-reviewed journals (N/A for none)

Received Paper

TOTAL: 1

Number of Papers published in peer-reviewed journals:

(b) Papers published in non-peer-reviewed journals (N/A for none)

Received Paper

TOTAL:
Number of Papers published in non peer-reviewed journals:

(c) Presentations

Number of Presentations: 0.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received Paper

TOTAL:

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received Paper

TOTAL:

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):

(d) Manuscripts

Received Paper

11/05/2014 5.00 Chao Wang, Mingzhou Ding, Benzi Kluger. Change in intraindividual variability over time as a key metric for defining performance-based cognitive fatigability., Brain and Cognition (01 2014)

TOTAL: 2
Number of Manuscripts:

Books

Received Book

TOTAL:

Received Book Chapter

TOTAL:

Patents Submitted

Patents Awarded

Awards

Graduate Students

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>Discipline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chao Wang</td>
<td>0.40</td>
<td>0.40</td>
</tr>
</tbody>
</table>

FTE Equivalent: 1

Names of Post Doctorates

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
</tr>
</thead>
</table>

FTE Equivalent:
Total Number:
Names of Faculty Supported

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>National Academy Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzi Kluger</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>FTE Equivalent:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Number:</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Names of Under Graduate students supported

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTE Equivalent:</td>
<td></td>
</tr>
<tr>
<td>Total Number:</td>
<td></td>
</tr>
</tbody>
</table>

Student Metrics

This section only applies to graduating undergraduates supported by this agreement in this reporting period.

The number of undergraduates funded by this agreement who graduated during this period: 0.00
The number of undergraduates funded by this agreement who graduated during this period with a degree in science, mathematics, engineering, or technology fields: 0.00
The number of undergraduates funded by your agreement who graduated during this period and will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields: 0.00
Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale): 0.00
Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education, Research and Engineering: 0.00
The number of undergraduates funded by your agreement who graduated during this period and intend to work for the Department of Defense: 0.00
The number of undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: 0.00

Names of Personnel receiving masters degrees

<table>
<thead>
<tr>
<th>NAME</th>
<th>Total Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Names of personnel receiving PHDs

<table>
<thead>
<tr>
<th>NAME</th>
<th>Total Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chao Wang</td>
<td>1</td>
</tr>
</tbody>
</table>

Names of other research staff

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>FTE Equivalent:</th>
<th>Total Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johanna Shattuck</td>
<td>0.50</td>
<td>0.50</td>
<td>1</td>
</tr>
</tbody>
</table>

Sub Contractors (DD882)
Scientific Progress

Since the beginning of this project we have made the following scientific progress:

1) We have developed a novel unifying taxonomy to clarify and standardize fatigue and fatigability terminology for research. 1
2) We have found that intraindividual variability (performance variability) is a more sensitive indicator of behavioral fatigability than change in response time or accuracy. We have also found on the basis of reaction time (RT) distributions that RT outliers drive apparent slowing in fatigue tasks.2
3) We have found that behavioral and physiological markers of cognitive control are impacted by prolonged cognitive task performance and mediate many performance changes. (Abstract published, manuscript under review)3, 4
4) Single trial ERP analyses reveal that noise (jitter) and amplitude changes both contribute to reductions in ERPs seen with prolonged cognitive performance. (manuscript in preparation)
5) Slowing of oscillatory activity, particularly in alpha frequencies, occurs over prolonged task and correlates with task performance. Contrary to our initial predictions, coherence, particularly in lower frequencies, also increases over the course of prolonged performance. (manuscript in preparation)
6) We have identified ERP markers brain activity specifically engaged for compensation of mental fatigue. (abstract under review, manuscript in preparation)

Citations

Technology Transfer
Scientific Progress and Accomplishments

Since the beginning of this project we have made the following scientific progress:

1) We have developed a novel unifying taxonomy to clarify and standardize fatigue and fatigability terminology for research.

2) We have found that intraindividual variability (performance variability) is a more sensitive indicator of behavioral fatigability than change in response time or accuracy. We have also found on the basis of reaction time (RT) distributions that RT outliers drive apparent slowing in fatigue tasks.

3) With our primary task (cued Stroop) we have found 4 topographically and functionally distinct ERP markers of proactive cognitive control. (manuscript under review)

4) We have found that behavioral and physiological markers of cognitive control are impacted by prolonged cognitive task performance and mediate many performance changes. (Abstract published, manuscript under review)

5) Single trial ERP analyses reveal that noise (jitter) and amplitude changes both contribute to reductions in ERPs seen with prolonged cognitive performance. (manuscript in preparation)

6) Slowing of oscillatory activity, particularly in alpha frequencies, occurs over prolonged task and correlates with task performance. Contrary to our intial predictions, coherence, particularly in lower frequencies, also increases over the course of prolonged performance. (manuscript in preparation)

7) We have identified ERP markers brain activity specifically engaged for compensation of mental fatigue. (abstract under review, manuscript in preparation)

Citations

