1. REPORT DATE (DD-MM-YYYY) | July 2014
2. REPORT TYPE | Briefing Charts
3. DATES COVERED (From - To) | July 2014 - August 2014

4. TITLE AND SUBTITLE
Nucleotide Crosslinked Polybutadiene for Replacement of Isocyanate-Cured Hydroxyl-Terminated Polybutadiene (HTPB) Systems

5a. CONTRACT NUMBER | In-House
5b. GRANT NUMBER |
5c. PROGRAM ELEMENT NUMBER |

6. AUTHOR(S)
Josiah T. Reams, Andrew J. Guenthner, Timothy S. Haddad, Joseph M. Mabry

5d. PROJECT NUMBER |
5e. TASK NUMBER |
5f. WORK UNIT NUMBER | Q0BG

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/RQRP
10 E. Saturn Blvd.
Edwards AFB CA 93524-7680

8. PERFORMING ORGANIZATION REPORT NO.

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/RQR
5 Pollux Drive.
Edwards AFB CA 93524-7048

10. SPONSOR/MONITOR'S ACRONYM(S) |
11. SPONSOR/MONITOR'S REPORT NUMBER(S) | AFRL-RQ-ED-VG-2014-243

12. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution A: Approved for Public Release; Distribution Unlimited.

13. SUPPLEMENTARY NOTES
Briefing Charts presented at ACS, San Francisco, CA, 10-14 Aug, 2014. PA#14420

14. ABSTRACT
N/A

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT | Unclassified
b. ABSTRACT | Unclassified
c. THIS PAGE | Unclassified

17. LIMITATION OF ABSTRACT | SAR
18. NUMBER OF PAGES | 13
19a. NAME OF RESPONSIBLE PERSON | Joseph Mabry
19b. TELEPHONE NO (include area code) | 661-275-5664

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18
NUCLEOTIDE CROSSLINKED POLYBUTADIENE FOR REPLACEMENT OF ISOCYANATE-CURED HYDROXYL-TERMINATED POLYBUTADIENE (HTPB) SYSTEMS

10 August 2014

Josiah T. Reams,1 Andrew J. Guenthner,2 Timothy S. Haddad,1 Joseph M. Mabry2

1ERC Incorporated, Air Force Research Laboratory
Edwards AFB, CA 93524
2Aerospace Systems Directorate, Air Force Research Laboratory
Edwards AFB, CA 93524
Outline

• **Background / Motivation**
 – Propellant binder history
 – Current solid propellant binder systems use polyurethane crosslinks from the reaction of hydroxyl-terminated polybutadiene (HTPB) with isocyanates
 – Isocyanates are known to cause respiratory irritation, occupational asthma and evidence of carcinogenic effects in animals.
 – OSHA currently considering further reductions in permissible exposure limits of isocyanates

• **Objective**
 – Replace isocyanate cure systems with crosslinking chemistries that are unlikely to pose health concerns now and in the future
 – Retention of key performance characteristics
 • Tg < -40 °F
 • Tensile strength at 77 °F > 100 psi
 • Elongation at break at 77 °F > 100%
 • Compatibility with > 80 % salt and aluminum particles

• **Approach**
 – Biological model systems
 • Nucleobase binding (DNA)
 • Thiol-ene “click” chemistry (reaction of polythiols with alkenes)

Acknowledgements: Strategic Environmental Research and Development Program (SERDP), Air Force Office of Scientific Research, Air Force Research Laboratory – Program Support; Applied Materials Group (AMG) team members (AFRL/RQRP)
Propellant Binder History

- Chinese military rockets in 13th century – earliest use of solid propellants
- Mixture of loose powder containing sulfur, nitrate salts, carbon (charcoal)
 - Unreliable ballistic properties
 - Could not be used in large diameter, high thrust motors
- Consolidation of loose powders into solid forms (grains)
 - Solid mass that can be molded to conform to a wide range of motor geometries
 - Deliver long duration thrust in a programmed manner
 - Molten Asphalt
 - Heated to a fluid melt, mixed with oxidant, cast into motor cavity and allowed to cool
 - Low solids content which could be formulated
 - Poor mechanical properties of highly loaded asphalt
 - Acrylate monomers
 - Monomers mixed with oxidizers and curative (divinyl benzene)
 - Mixture cast then heated to cure temperature
 - Cure exotherm sometimes uncontrollable
 - Shrinkage of solid

Propellant Binder History

- Consolidation of loose powders into solid forms (grains)
 - Partially polymerized liquids
 - Controlled molecular weight polymers of butadiene and acrylic acid
 - Cured with epoxy or imine
 - 80-85 percent solids – castable mix
 - Random crosslinks throughout chain
 - End functionalized polymers cured with trisimines
 - Nitro containing binders
 - Earliest solid binder was cellulose nitrate plasticized with nitroglycerin
 - Glycidyl nitrate
 - Petrin acrylate
 - Addition and condensation nitro polymers
 - Perchlorate group as an amine salt
 - Difluoroamino and fluorocarbon binders
 - Perchlorate group as an amine salt
 - Difluoroamino and fluorocarbon binders
 - Energetic binders
Isocyanate cured hydroxyl-terminated polybutadiene (HTPB) binders

- Three components in a binder (grain): polymeric binder, inorganic oxidizer and metallic fuel
- Polyurethane binder consists of
 - Polyol (HTPB)
 - Isocyanate curative
- Propellant grain characteristics
 - Sufficient tensile strength and elongation to handle thermal cycling, transportation and sudden pressurization on ignition
 - Maintain elasticity at low temperatures (Low T_g)
 - Compatibility with oxidizer and fuel
 - Maintain structural integrity with high solid content (~80 %)
- Free radial polymerized HTPB
 - Mixture of 1,4 and 1,2 addition
 - T_g -70 °C
 - Average of 2.5 OH groups per chain
Adenine and thymine monomeric units were synthesized by Michael addition of a nucleobase with butanediol diacrylate. Incorporation of aliphatic spacer is expected to promote compatibility with HTPB and retention of desirable properties.

Copolymerization of either adenine or thymine methacrylate with butadiene gives an “A” and “B” complimentary copolymers.

When in the presence of each other complimentary copolymers associate and form a crosslinked system consisting of hydrogen bonds.

Adenine, Thymine Acrylate Characterization

- N-9 substituted adenine acrylate was the major product. N-7 adduct and excess butanediol diacrylate was removed by flash chromatography
- NMR confirms N-7 addition
- Characteristic vinyl protons present with the expected integration

- N-1 substituted thymine acrylate was the major product.
- NMR confirms N-1 addition
- Characteristic vinyl protons present with the expected integration
Butadiene Polymerization / Butyl Methacrylate Copolymerization

- Optimization of butadiene polymerization performed in toluene with AIBN as initiator
- Polymerization performed at 70 °C for 48 hours at approximately 2 atm
- Polybutadiene contained 20% 1,2 addition
- Overall yield of ~20% was obtained from multiple polymerizations

- Due to the low yield of butadiene polymerization, copolymerization of butadiene with butyl methacrylate was performed to estimate expected incorporation of nucleobase acrylate with a given feed ratio
- Copolymerization of butadiene with butyl methacrylate was performed in toluene with AIBN as initiator
- Butyl acrylate incorporation of 3.2 mol% was obtained from a 2 mol% feed ratio
- Overall yield of 22% was consistent with butadiene homopolymerizations
• Copolymerization of adenine acrylate with butadiene was performed in DMSO with AIBN as the initiator
• Adenine acrylate incorporation of 2.5 mol% was obtained from a 4 mol% feed ratio

• Thymine acrylate incorporation of 2.7 mol% was obtained from a 4 mol% feed ratio
• Adenine acrylate and thymine acrylate appear to have near identical reactivity ratios as would be expected
• Overall yield of ~20% for adenine and thymine copolymerizations was consistent with butyl methacrylate copolymerization with butadiene
Nucleotide Copolymer T_gs

- Polybutadiene synthesized by free radical addition displayed a T_g (-79 °C) near that of commercial HTPB.
- Incorporation of thymine acrylate in polybutadiene resulted in a small increase in T_g that suggests little self-association between thymine units with 2.5 mol% incorporation.
- The single transition of thymine acrylate suggests that the nucleobase monomer is distributed randomly in the polymer backbone.

- Low temperature transitions are present in TMA tan delta that were not detected by DSC.
- TMA indicated adenine acrylate has a T_g of -60 °C.
- Incorporation of thymine acrylate in polybutadiene resulted in a small increase in T_g.
- Multiple transitions seen in TMA may be due to self association between adenine units.
- Adenine and thymine copolymers have nearly identical T_gs, as seen in DSC, but are both ~40 °C higher in TMA.
Summary

• Acrylic nucleobase monomers were synthesized from the Michael addition of a nucleobase with butanediol diacylate
• Copolymerization of nucleobase acrylates at a 4 mol% overall feed ratio with butadiene resulted in copolymers with ~2 mol% nucleobase incorporation and ~20% overall yield, consistent with butadiene homopolymerizations and butyl methacrylate / butadiene copolymerization
• Nearly identical nucleobase incorporation in butadiene suggests the two nucleobase monomeric units have identical reactivity ratios
• T_g of thymine acrylate copolymer, measured by both DSC and TMA, was nearly identical to that of polybutadiene
• T_g of adenine acrylate was not seen in DSC but was found to be -60 °C by TMA
• Secondary transitions above T_g were observed for the adenine copolymer in both DSC and TMA which may be due to self association of adenine units
Propulsion - the technology that enables the warfighter to reach out and touch anyone, anywhere in the world — and beyond.

The Air Force Research Laboratory’s Propulsion Directorate - the nation’s premier organization to create and transition technology for military propulsion and power systems since the dawn of powered flight.