In burn patients, inhalation injury is an independent risk factor for mortality, along with TBSA burned and age. The sequelae of inhalation injury include progressive pulmonary dysfunction, infection, and death. Although bronchoscopy is the standard for diagnosis, it only assesses the proximal airway and does not provide a comprehensive analysis of pulmonary insult. Chest radiographs have not been proven helpful in diagnosis of inhalation injury. Our hypothesis is that a CT scan alone or in conjunction with bronchoscopy can be used as a prognostic tool for critically ill burn patients, especially those with inhalation injury. The authors performed a retrospective study of all patients admitted to the U.S. Army Institute of Surgical Research Burn Center between 2002 and 2008 with chest CT within 24 hours of admission. They divided subjects into two groups, those with evidence of inhalation injury on bronchoscopy and those without. They used a radiologist’s score to assess the degree of damage to the pulmonary parenchyma. The primary endpoint was a composite of pneumonia, acute lung injury/acute respiratory distress syndrome, and death. The inhalation injury group consisted of 25 patients and the noninhalation injury group of 19 patients. Groups were not different in age, TBSA burned, and percentage full-thickness burn. By multiple logistic regression, detection of inhalation injury on bronchoscopy was associated with an 8.3-fold increase in the composite endpoint. The combination of inhalation injury on bronchoscopy and a high radiologist’s score was associated with a 12.7-fold increase in the incidence of the composite endpoint. Admission CT assists in predicting future lung dysfunction in burn patients. (J Burn Care Res 2012;33:532–538)

In burn patients, inhalation injury can result in progressive pulmonary dysfunction, infection, and death. Although bronchoscopy is the standard for diagnosis, it only assesses the proximal airway and does not provide a comprehensive analysis of pulmonary insult. Chest radiographs have not been proven helpful in diagnosis of inhalation injury. Our hypothesis is that a CT scan alone or in conjunction with bronchoscopy can be used as a prognostic tool for critically ill burn patients, especially those with inhalation injury. The authors performed a retrospective study of all patients admitted to the U.S. Army Institute of Surgical Research Burn Center between 2002 and 2008 with chest CT within 24 hours of admission. They divided subjects into two groups, those with evidence of inhalation injury on bronchoscopy and those without. They used a radiologist’s score to assess the degree of damage to the pulmonary parenchyma. The primary endpoint was a composite of pneumonia, acute lung injury/acute respiratory distress syndrome, and death. The inhalation injury group consisted of 25 patients and the noninhalation injury group of 19 patients. Groups were not different in age, TBSA burned, and percentage full-thickness burn. By multiple logistic regression, detection of inhalation injury on bronchoscopy was associated with an 8.3-fold increase in the composite endpoint. The combination of inhalation injury on bronchoscopy and a high radiologist’s score was associated with a 12.7-fold increase in the incidence of the composite endpoint. Admission CT assists in predicting future lung dysfunction in burn patients. (J Burn Care Res 2012;33:532–538)
Admission Chest CT Complements Fiberoptic Bronchoscopy in Prediction of Adverse Outcomes in Thermally Injured Patients

Oh J. S., Chung K. K., Allen A., Batchinsky A. I., Huzar T., King B. T., Wolf S. E., Sjulin T., Cancio L. C.,
function testing. To date, these diagnostic modalities have been found to be insufficiently sensitive, too invasive, or too cumbersome. CT scan can be extremely useful in documenting the heterogeneity of parenchymal damage. It can show regional density distribution and temporal progression of damage as well as improvement in regional aeration in the lung. We previously performed an ovine study of CT scans in smoke inhalation injury, finding that a radiologist’s score (RADS) can detect severity of inhalation injury at 24 hours. In addition, case reports of chest CT scans in patients with inhalation injury suggest clinical utility.

The purpose of this study was to investigate the association between findings on lung CT scans (acquired in the first 24 hours of admission to the burn center) with outcome in burn patients. Our hypothesis is that a CT scan alone or in conjunction with bronchoscopy can be used as a prognostic tool for critically ill burn patients, especially those with inhalation injury.

METHODS

This study was conducted under a protocol reviewed and approved by the institutional review board. Inclusion criteria were all patients aged 18 years or older admitted to our burn center from June 2002 to December 2008 who had a CT scan of the chest with or without intravenous (IV) contrast within 24 hours of admission.

Exclusion criteria were patients younger than 18 years, patients with preexisting parenchymal lung disease, and patients with a diagnosis of ARDS, ALI, or transfusion-related lung injury before the CT scan. Patients who had CT scans of the chest >24 hours after admission and any patient with lung trauma or lung surgery before the CT scan were also excluded.

Data were retrospectively analyzed from inpatient electronic medical records. Patients with inhalation injury diagnosed on bronchoscopy comprised the “inhalation injury group” and those without inhalation injury diagnosis on bronchoscopy the “no inhalation injury group.”

The following data were recorded and compared: age, TBSA, percent full-thickness burn (% FT), injury severity score (ISS), presence of tracheostomy, arterial carboxyhemoglobin levels (COHb), and the ratio (PFR) of the partial pressure of oxygen in arterial blood (PaO₂) to the fraction of inspired oxygen (FiO₂). In addition, the following variables were recorded: time in days from burn injury to CT scan, number of 1-cm slices per CT scan, and use of IV contrast. Outcome variables included ventilator-free days, mortality, incidence of pneumonia, and ALI or ARDS during admission.

Resuscitation, Wound Care, and Ventilator Management

On arrival to the burn center, burn wound depth was assessed and patients were resuscitated with IV crystalloid solution based on TBSA. Fluids were titrated to achieve a urine output of 30 to 50 ml/hr. Albumin (5% in normal saline) was administered during hours 24 to 48 postburn. (It was started 12 hours postburn if high resuscitation volumes were required at that time.) Wounds were assessed and debrided on admission, and excision and grafting was performed after patients were adequately resuscitated. For patients with a history or physical examination suspicious for inhalation injury, a fiberoptic bronchoscopy was performed. A range of findings on bronchoscopy was considered positive for inhalation injury to include carbonaceous deposits, mucosal erythema, mucosal sloughing, or mucosal ulcerations. (Throughout this article, the term “inhalation injury” is taken to mean the presence of such bronchoscopic evidence of inhalation injury.) In patients with evidence of inhalation injury on bronchoscopy, high-frequency percussive ventilation and nebulized heparin were initiated. Daily spontaneous breathing trials were performed.

CT-Scan Analysis

Chest CT scans were acquired from a digital scan repository and analyzed by an experienced, board-certified radiologist who was blinded to outcomes and to group assignment. The radiologist scored each CT scan according to the grading system previously described in a study of ovine smoke inhalation. Briefly, CTs from each patient were systematically evaluated using 1-cm axial slices from the apex to the level of the diaphragm. The left and right lung fields in each slice were divided into four quadrants, and each quadrant was assigned a score from 0 to 3 corresponding with a range of severity of findings (see Table 1). The highest, single score within a quadrant was assigned to the final score, and a total score for each slice was calculated (see Figure 1). The total score for each slice was then summed for the entire

<table>
<thead>
<tr>
<th>Finding</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0</td>
</tr>
<tr>
<td>Increased interstitial markings</td>
<td>1</td>
</tr>
<tr>
<td>Ground glass opacification</td>
<td>2</td>
</tr>
<tr>
<td>Consolidation</td>
<td>3</td>
</tr>
</tbody>
</table>
CT scan to obtain the overall RADS. To normalize the score according to the number of axial CT scan slices, the total RADS was divided by the number of slices read per CT to obtain a RADS per slice. The RADS per slice was used for statistical comparisons between the groups.

A ventilator-free day was defined as the number of days after admission from day 0 to day 28 alive without ventilator assistance for at least 24 consecutive hours. Pneumonia was defined according to clinical criteria and a quantitative culture from bronchoalveolar lavage as described by the American Thoracic Society and the Infectious Disease Society of America. If the culture grew coagulase-negative Staphylococcus or common skin flora, the illness was not considered pneumonia. ALI and ARDS were defined according to the American-European Consensus conference.

Our primary endpoint was composite of death and/or ALI/ARDS, or pneumonia. These endpoints were chosen as clinically significant sequelae of inhalation injury.

Statistical Analysis

As appropriate, the χ² or Fisher’s exact test was used for categorical variables and Student’s t-test or the Kruskal–Wallis for continuous variables. Univariate analysis was performed to identify potentially significant differences between patients with and without the composite endpoint. Multivariate logistic regression analysis was then used to identify independent risk factors for the composite endpoint. Spearman correlation coefficients were calculated to determine interaction between the explanatory variables used in the multiple logistic regression models. Statistical analyses were performed by using a commercially available statistical software package (SAS 9.1; SAS Institute, Inc, Cary, NC). Statistical significance was accepted at P ≤ .05.

RESULTS

Between June 2002 and December 2008, 2376 patients were admitted to the burn center. Of these, 109 were potential subjects. On screening the medical records, we excluded 47 patients because of the presence of primary lung trauma or active lung injury or infection at the time of the CT scan or the absence of a diagnostic bronchoscopy. Another 18 patients were excluded because their CT scans were acquired outside the 24-hour window from admission. Twenty-five patients were included in the inhalation injury group and 19 in the no inhalation injury group. There was no difference in age, TBSA, % FT burn, use of CT scan with IV contrast, tracheostomy, or COHb level. ISS was higher in the inhalation injury group (median: 20, IQR: 12–34) than in the no inhalation injury group (median: 9, IQR: 4–25; P = .0083; see Table 2).

The RADS (median: 109, IQR: 74–146 vs median: 57, IQR: 12–126; P = .03) and the RADS per slice (median: 7.1, IQR: 4.4–9.7 vs median: 3.0, IQR: 0.2–7.2; P = .03) were significantly higher in the inhalation injury group (see Table 3). When modeling RADS per slice as a binary variable (> or ≤8), statistical significance was accepted at P ≤ .05.
there were three patients in the no inhalation injury group who had RADS per slice ≥8.

There was no significant difference in ventilation-free days, incidence of pneumonia, or mortality (Table 4). However, ALI/ARDS was significantly higher in the inhalation injury group (79 vs 8%; \(P = .0014 \)), and the inhalation injury group had a significantly higher composite endpoint incidence (89 vs 20%; \(P < .0001 \)) (see Table 4).

We then performed an univariate analysis to identify significant differences between those patients with vs those without the composite endpoint (see Table 5). There were no significant differences in age, ISS, PFR, days to CT, total RADS, RADS per slice, or COHb level between those with and those without the composite endpoint. The TBSA and % FT burn were higher in patients with the composite endpoint. In addition, more patients had inhalation injury (by bronchoscopy) in the

group with the composite endpoint (see Table 5). When modeling RADS per slice as a binary variable (> or ≤8), the difference between groups was not significant (see Table 5). The distribution of CT scans by year for each group is displayed in Figure 2.

While controlling for TBSA and % FT burn, we then performed a multiple logistic regression to identify independent risk factors for the composite endpoint using the above variables. Inhalation injury was retained as a predictor of the composite endpoint (odds ratio [OR]: 8.3, 95% confidence interval [CI]: 1.3–49.1; \(P = .02 \)). When the regression analysis was repeated with a set cutoff value (>8) for RADS per slice and the other variables as above, again only inhalation injury was a significant predictor of composite outcome (OR: 8.6, CI: 1.5–48.2; \(P = .01 \)).

To identify the effect of RADS >8 in combination with inhalation injury, we combined these into a single binary variable. The combination of RADS per slice >8 and inhalation injury was predictive of the composite outcome with a greater OR than inhalation injury alone (OR: 12.7, CI: 1.1–153.7; \(P = .05 \)) (see Table 6).

DISCUSSION

The main finding of this retrospective study is that the radiologist’s interpretation of the admission chest CT

<table>
<thead>
<tr>
<th>Variable</th>
<th>Composite Endpoint Present (n = 22)</th>
<th>Composite Endpoint Absent (n = 22)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>41.4 (22.9)</td>
<td>40.4 (16.8)</td>
<td>.8697</td>
</tr>
<tr>
<td>TBSA</td>
<td>41.5 (30.1)</td>
<td>16.9 (16.0)</td>
<td>.0061</td>
</tr>
<tr>
<td>% Full thickness</td>
<td>22.7 (27)</td>
<td>4.4 (9.1)</td>
<td>.0067</td>
</tr>
<tr>
<td>Inhalation injury</td>
<td>17 (77%)</td>
<td>8 (36%)</td>
<td>.0062</td>
</tr>
<tr>
<td>ISS</td>
<td>26.2 (10.2)</td>
<td>11.5 (9.2)</td>
<td>.0062</td>
</tr>
<tr>
<td>PFR</td>
<td>237.2 (154.3)</td>
<td>341.9 (210.5)</td>
<td>.0062</td>
</tr>
<tr>
<td>Days to CT</td>
<td>2.09 (2.19)</td>
<td>1.58 (1.59)</td>
<td>.0062</td>
</tr>
<tr>
<td>Total RADS</td>
<td>117.4 (96.2)</td>
<td>85.8 (55.2)</td>
<td>.0062</td>
</tr>
<tr>
<td>RADS per slice</td>
<td>6.8 (5.3)</td>
<td>5.1 (3.5)</td>
<td>.0062</td>
</tr>
<tr>
<td>RADS > 8</td>
<td>8 (36%)</td>
<td>4 (18%)</td>
<td>.0062</td>
</tr>
<tr>
<td>COHb level</td>
<td>4.04</td>
<td>1.25</td>
<td>.0062</td>
</tr>
</tbody>
</table>

* Composite outcome: death, ALI/ARDS, and/or pneumonia; values are expressed as mean (±SD).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalation injury + RADS >8.0</td>
<td>.03</td>
<td>12.7</td>
</tr>
<tr>
<td>TBSA</td>
<td>.07</td>
<td>1.045</td>
</tr>
<tr>
<td>% Full-thickness burn</td>
<td>.7</td>
<td>1.013</td>
</tr>
</tbody>
</table>

* Composite outcome: death, ALI, ARDS, and/or pneumonia.

RADS, radiologist score.
scan added to the prognostic value of the presence of inhalation injury (as diagnosed by fiberoptic bronchoscopy) in predicting a composite outcome of death, ALI/ARDS, and pneumonia. This clinical study was built on earlier animal work done at this institute. In an ovine study of smoke inhalation injury, Park et al22 found that an expert radiologist’s interpretation of the chest CT scan enabled accurate stratification of uninjured controls and mild, moderate, and severe smoke inhalation injury at 24 hours. In that study, the RADS also outperformed semiautomated computerized analysis of the same CT scans. We used a similar method of analysis for interpreting the CT scans in this study.

To date, this is the largest study evaluating the utility of chest CT scan in acutely burned patients in predicting outcome. During our retrospective review, we used a range of findings to diagnose inhalation injury. Furthermore, a systematic grading system for bronchoscopic findings is not used in our institution. However, previous studies have shown that bronchoscopic grading systems do not correlate with the development of ARDS.13,27 This may be attributable to various toxins that are inhaled in addition to direct thermal or smoke injury to the airways. The benefit of a CT scan in characterizing pulmonary abnormalities in our patient population is likely because of the ability of CT to image the distal airways and lung parenchyma in fine detail. In contrast, bronchoscopy only visualizes the proximal, large airways. Proximal and distal findings may differ for two reasons. First, the heat content of inhaled gases diminishes as they pass through the airways. Second, the particulate content of the smoke mixture affects deposition site, such that heavier particles and larger aerosols are deposited more proximally. Therefore, a CT scan may provide additional information about the overall burden of injury to the lungs in patients with inhalation injury.

The value of CT scan in assessing the severity of lung injury has been described in other nonburn studies. A retrospective analysis of chest CT scans in 44 patients with ARDS showed that an increase in the severity of findings on CT scan by a radiologist’s interpretation was independently associated with mortality.28 In another study, CT scan findings in the chest offer a more readily quantifiable assessment of the lung parenchyma. Although other CT scoring systems exist for conditions including cystic fibrosis and ARDS, these are not in widespread clinical use and have not been validated in large, prospective settings. We chose to base our scoring system on a previous ovine study of smoke inhalation injury because of its direct clinical applicability. Currently, no universal grading system for inhalation injury exists. The practice of diagnosing inhalation injury is based on a combination of history (injury within a closed space), physical examination (facial burns, carbonaceous sputum, hoarseness, stridor), laboratory findings (elevated COHb and alveolar-arterial oxygen gradient), and bronchoscopy. None of these criteria alone are infallible predictors of the sequelae of inhalation injury. A recent appraisal of the current status of research progress on inhalation injury made a universal diagnosis and grading system for inhalation injury a priority.32 An accurate method of stratifying patients with severe inhalation injury would greatly assist clinicians in both improving patient care and managing resources, because patients with inhalation injury have been shown to have increased fluid resuscitation volumes.32–34 In addition, patients with inhalation injury benefit from specialized therapeutics such as high-frequency percussive ventilation and inhaled heparin.35,36 Over time, the availability, speed, and imaging capabilities of CT scans have improved, making them useful adjuncts for patients with inhalation injury.

There were several limitations of our study that must be addressed. We accepted positive findings on fiberoptic bronchoscopy as diagnostic of inhalation injury. Therefore, the meaning of a negative bronchoscopy in conjunction with a high RADS is unclear at this time. The combination of inhalation injury on bronchoscopy with a RADS per slice >8 increased the OR from 8.6 to 12.7 in predicting the severe sequelae of inhalation injury. This suggests that the addition of CT scan to the care of patients with inhalation injury may have prognostic utility. However, these two ORs had overlapping CIs. This could be because of the small patient population in this study. Also, patients with inhalation injury had a significantly higher ISS. Although we excluded all patients with thoracic
trauma and thoracic surgery, such injuries can also result in an increased incidence of ALI/ARDS. Furthermore, the mean time from burn injury to CT scan was approximately 2 days. Although the time to CT scan in our group comparisons did not differ significantly, this delay may impact on CT scan findings. In many cases, bronchoscopy preceded CT scans of the chest; therefore, findings on CT could not be accurately correlated with bronchoscopic findings, which may have been absent at the time of the CT. The optimal timing for CT scans should be elucidated in future prospective studies.

ACKNOWLEDGMENTS

We thank James K. Aden, statistician for the U.S. Army Institute of Surgical Research, for the statistical analysis in this manuscript and Ms. Otilia Sanchez for her assistance in editing and formatting.

REFERENCES