Brief Communication

In vivo evaluation of venular glycocalyx during hemorrhagic shock in rats using intravital microscopy☆,☆☆

Ivo Torres Filho *, Luciana N. Torres, Jill L. Sondeen, I. Amy Polykratis, Michael A. Dubick

Damage Control Resuscitation, United States Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA

Abstract

Hemorrhage is responsible for a large percentage of trauma-related deaths but the mechanisms underlying tissue ischemia are complex and not well understood. Despite the evidence linking glycocalyx degradation and hemorrhagic shock, there is no direct data obtained in vivo showing glycocalyx thickness reduction in skeletal muscle venules after hemorrhage. We hypothesize that damage to the endothelial glycocalyx is a key element in hemorrhage pathophysiology and tested the hypothesis that hemorrhage causes glycocalyx degradation in cremaster muscle microvessels. We utilized intravital microscopy to estimate glycocalyx thickness in 48 microvessels while other microvascular parameters were measured using non-invasive techniques. Systemic physiological parameters and blood chemistry were simultaneously collected. We studied 27 post-capillary venules (<16 μm diameter) of 8 anesthetized rats subjected to hemorrhage (40% of total blood volume). Six control rats were equally instrumented but not bled. Dextrans of different molecular weights labeled with FITC or Texas Red were injected. Glycocalyx thickness was estimated from the widths of the fluorescence columns and from anatomical diameter. While control rats did not show remarkable responses, a statistically significant decrease of about 59% in glycocalyx thickness was measured in venules after hemorrhagic shock. Venular glycocalyx thickness and local blood flow changes were correlated: venules with the greatest flow reductions showed the largest decreases in glycocalyx. These changes may have a significant impact in shock pathophysiology. Intravital microscopy and integrated systems such as the one described here may be important tools to identify mechanisms by which resuscitation fluids may improve tissue recovery and outcome following hemorrhage.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Hemorrhage is responsible for a large percentage of trauma-related deaths in civilian and military settings but the mechanisms underlying tissue ischemia are complex and not well understood. Despite the evidence linking glycocalyx degradation and hemorrhagic shock, there is no direct data obtained in vivo showing glycocalyx thickness reduction in skeletal muscle venules after hemorrhage. We hypothesize that damage to the endothelial glycocalyx is a key element in hemorrhage pathophysiology and tested the hypothesis that hemorrhage causes glycocalyx degradation in cremaster muscle microvessels. We utilized intravital microscopy to estimate glycocalyx thickness in 48 microvessels while other microvascular parameters were measured using non-invasive techniques. Systemic physiological parameters and blood chemistry were simultaneously collected. We studied 27 post-capillary venules (<16 μm diameter) of 8 anesthetized rats subjected to hemorrhage (40% of total blood volume). Six control rats were equally instrumented but not bled. Dextrans of different molecular weights labeled with FITC or Texas Red were injected. Glycocalyx thickness was estimated from the widths of the fluorescence columns and from anatomical diameter. While control rats did not show remarkable responses, a statistically significant decrease of about 59% in glycocalyx thickness was measured in venules after hemorrhagic shock. Venular glycocalyx thickness and local blood flow changes were correlated: venules with the greatest flow reductions showed the largest decreases in glycocalyx. These changes may have a significant impact in shock pathophysiology. Intravital microscopy and integrated systems such as the one described here may be important tools to identify mechanisms by which resuscitation fluids may improve tissue recovery and outcome following hemorrhage.

© 2012 Elsevier Inc. All rights reserved.
Title
In vivo evaluation of venular glycocalyx during hemorrhagic shock in rats using intravital microscopy.

Authors
Torres F. I. P., Torres L. N., Sondeen J. L., Polykratis I. A., Dubick M. A.

Performing Organization
United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX

Distribution/Availability Statement
Approved for public release, distribution unlimited
were measured non-invasively (MouseOx, Starr Lifesciences). Arterial pH, lactate, base excess, bicarbonate, and K+, were measured from blood withdrawal and to collect blood samples. Total hemoglobin concentration, hemoglobin O2 saturation (SO2) and respiratory rate (RR) were monitored blood pressure from the arterial blood pressure signal. One femoral vein was used to infuse fluids, and one femoral artery was used for blood withdrawal and to collect blood samples. CG4, CHEM8 modules, I-stat, Abbott, Chicago, IL). Hemoglobin O2 saturation (SO2) and respiratory rate (RR) were monitored. Blood was collected into heparinized glass capillary tubes for hemato–crit measurement. One carotid artery was cannulated (2-French Mikro-tip catheter transducer, model SPR-320, Millar Instruments, Houston, TX) for monitoring blood pressure. One femoral vein was used to infuse fluorescent dyes and other fluids, and one femoral artery was used for blood withdrawal and to collect blood samples. Total hemoglobin concentration, pH, lactate, base excess, bicarbonate, and K+, were measured from blood samples (CC4, CHEM8 modules, I-stat, Abbott, Chicago, IL). Blood was collected into heparinized glass capillary tubes for hemato–crit measurement (microhematocrit centrifuge model MB, Needham HTS, MA). Hemoglobin O2 saturation (SO2) and respiratory rate (RR) were measured non-invasively (MouseOx, Starr Lifesciences). Arterial blood pressure, heart rate, core temperature, SO2 and RR were monitored and continuously recorded using a computerized acquisition system (Dynamic Research Evaluation Workstation — DREW, US Army Institute of Surgical Research, San Antonio, TX, with DAQ module, Model USB 6218 BNC, National Instruments, Austin, TX) that also calculates the mean arterial blood pressure (MAP), systolic and diastolic blood pressures from the arterial blood pressure signal.

Intravital microscopy

The system was assembled over a horizontal breadboard antivibration table (63–533, TMC, Peabody, MA) to limit the vibrations from the floor that could degrade image quality. A fixed-stage upright microscope (BX51WI, Olympus) was equipped with dry objectives used for selecting the microvessels and all reported observations were made with an infinity corrected water immersion objective (Zeiss 63x, N.A. = 0.95). A 100 W tungsten-halogen lamp was used for transillumination and a Metal Halide was used for epi-illumination with selective filter block systems for Texas Red (TR) fluorescence (excitation and emission wavelength, 545–580 nm and >610 nm, respectively) and fluorescein isothiocyanate (FITC) fluorescence (excitation and emission wavelength, 470–495 nm and 510–550 nm). One optical exit of the microscope was connected to a velocity measuring device head (Optical Doppler Velocimeter, Texas A&M), a 3-CCD color camera (DXC-C33, Sony), a recorder (SR-HD1500US blu-ray disc & HDD recorder, JVC) and was also used to collect video segments for dynamic measurements such as leukocyte-endothelium interactions. The second exit was connected to a digital charge-coupled device (CCD) camera (CoolSnap cf; Roper Scientific, NJ) with 1392 × 1040 pixels resolution. The camera was computer-controlled and the generated images were digitally stored for later analysis. The microscope stage and the focus were adjusted manually.

Experimental animal preparations

In vivo experiments were performed on the exteriorized cremaster muscle and mesentery preparations, using a dual thermostatically-controlled transparent platform (Golub and Pittman, 2003), as previously described (Harris et al., 1975; Hutchins et al., 1973; Torres Filho et al., 2001a, 2001b). The cremaster was exteriorized by an incision made in the left scrotum and the muscle was positioned flat over a thin sapphire pedestal that was thermostabilized with a transparent heater and thermo controller (CT-698, Minco, Minneapolis, MN). During the surgical preparation, the muscle was bathed by warm Krebs–Henseleit solution that was discontinued after surgery. In order to prepare the mesentery, an ileal loop and respective mesentery were carefully exteriorized and the tissue was spread over the warmed transparent viewing platform. Any exposed gut was covered with gauze soaked in saline. After exposure, both preparations were covered with a thin impermeable plastic film (Saran Wrap, Dow Corning, Midland, MI) to minimize both dehydration and gas exchange with the atmosphere. The animal platform was then positioned over the microscope stage.

Fluorescently-labeled dextran (Dx) solutions

Since dextrans can be readily excluded from the glycocalyx under control conditions but can penetrate the glycocalyx after hemorrhage due to their size and charge, we used neutral Dx of different molecular weights (Dx40 = 40 kDa, Dx70 = 70 kDa, Dx500 = 500 kDa), labeled with either TR or FITC, to measure the space occupied by the glycocalyx. At baseline, TR–Dx70 and TR–Dx40 were injected for determining the intact glycocalyx thickness, followed by FITC–Dx70 and FITC–Dx500 during hemorrhagic shock. After each bolus of fluorescently labeled Dx was administered, 5 minutes was allowed for the fluorescence to reach a steady state level.

Experimental protocol

Initially, 2–4 microscopic fields containing post-capillary venules were randomly selected. Five minutes before baseline measurements, TR–Dx70 (10 mg/ml, Molecular Probes) was injected. Each field was recorded under transmitted light before epi-fluorescence illumination. Paired images of individual microvascular segments using each tracer were recorded using the CCD camera and transferred to a computer. TR–Dx40 (10 mg/ml) was then injected and the same paired recordings (transillumination followed by epi-illumination) were performed for each microvessel, in the exact positions as in the previous sequence. In order to minimize light exposure and excessive or undesirable probe excitation in studied and adjacent microvessels, the field diaphragm size and the duration of both epi-illumination and camera...
exposure were reduced as much as possible. Both the transillumination and external light were switched off before the fluorescence recordings began. Red blood cell velocity was determined on-line using an Optical Doppler Velocimeter (Borders and Granger, 1984; Davis, 1987). Blood flow and shear rate were calculated from RBC velocity and vessel diameter as described previously (Torres et al., 2008).

In order to reproduce a more realistic scenario, we used a recently published hemorrhagic shock model (Torres Filho et al., 2010) where the MAP was not kept at any pre-determined level. A fixed-volume hemorrhage was induced in 30 minutes using a double-lumen catheter (Brainstorm Scientific, Inc., Braintree, MA) for simultaneous bleeding and infusion of NaCl citrate solution (Baxter Healthcare Corp., Deerfield, IL) for regional extracorporeal anticoagulation by means of 2 synchronized syringe pumps. The target shed blood volume was calculated as 40% of total blood volume. In a separate group of rats, a set of systemic measurements was performed at the end of the 30-min bleeding, to document the systemic effects of the hemorrhagic shock. After 90 minutes of shock period, FITC–Dx500 (10 mg/ml, Sigma) was injected and paired recordings of the selected fields were performed. Finally, FITC–Dx70 (10 mg/ml) was injected and paired recordings of all fields were made. A set of systemic parameters was collected during baseline coinciding with the microcirculatory data. A final set of systemic measurements was performed during the hemorrhagic shock period, also coinciding with the collection of microcirculatory data ($t=90$ min). Control animals were subjected to all procedures except hemorrhage.

Glycocalyx thickness measurements

To estimate the glycocalyx thickness, the dye-exclusion method (Henry and Dunil, 1999) and the image analysis method pioneered by Gao and Lipowsky (2010) were adapted. As illustrated in Figs. S1 and S2 of Supplementary Material, the thickness was estimated from the widths of the fluorescent columns using epi-illumination images and from the microvessel inner diameter measured using transillumination images (herein called anatomical diameter, d). A measurement line was traced, perpendicular to the longitudinal axis of each vessel. The line was of sufficient length to span the entire microvessel width and beyond. Its exact location was noted and used in all subsequent images at different time points (baseline and post-shock). The image analysis software produced a profile of the light intensity along this line. For transillumination images, the profile helped determine the anatomical diameter: the endothelial cell surface was taken as the glycocalyx point and surface of the endothelial cell was taken as the glycocalyx thickness. The deviation from Gaussian distribution was tested for all systemic and microvascular data. Parametric tests were found adequate. Values are reported as mean ± SEM. Differences between before and after hemorrhage as well as between groups were analyzed by using repeated measures ANOVA. A level of $p<0.05$ was considered significant.

Results

Time control rats

Animals subjected to all procedures except hemorrhage showed relatively stable systemic parameters throughout the experimental period of 2 hours: the differences between baseline and “hemorrhage” values were not statistically significant (data not shown). Twenty-one post-capillary venules from 6 different preparations were studied in these animals. The mean anatomical diameter and red blood cell velocity did not show significant change over time for mesenteric or cremasteric post-capillary venules. Pooled average results are shown in Table 1.

In order to evaluate potential changes in glycocalyx thickness, fluorescently labeled dextrans were used. During baseline, the diameter of the fluorescent column of TR–Dx40 was not different from the anatomical diameter for the studied venules (Table 1). However, the difference between the anatomical diameter and the diameter of the fluorescent columns of TR–Dx70, FITC–Dx70 and FITC–Dx500 were all statistically significant. Therefore, in animals that were not subjected to hemorrhage, dextrans of low molecular weight (40 kDa) penetrated the glycocalyx but larger Dx (70 kDa and above) did not. The estimated glycocalyx thickness based on these differences did not change from baseline to post-hemorrhage period and averaged $0.772±0.040 \mu m$. These findings also suggested a small or minimal photobleaching/glycocalyx damage as a result of the light-dye treatment.

Hemorrhaged rats

Animals were bled by an average final volume of $23.3±0.5$ ml kg$^{-1}$ and all rats survived the complete protocol. Table 2 shows the systemic parameters that were measured at the end of the hemorrhage period and at the time when the microcirculatory measurements were taken. In contrast with baseline, there were sharp changes in the systemic parameters at the end of the hemorrhage. In terms of venular RBC velocity and blood flow, there was a significant decrease to $52.7±13.4\%$ and $35.2±12.8\%$ of baseline, respectively. All microvascular data are summarized in Table 1.

Changes in glycocalyx thickness

In preliminary tests, 12 vessels from randomly selected experiments were measured by three investigators, only one of them not blinded with regards to the protocol/origin of the images. The 3 sets of results were not statistically different from each other (data not shown).

The diameter of the fluorescent column of TR–Dx40 during baseline was not different from the anatomical diameter (d). After hemorrhage, the difference between the anatomical diameter and the diameter of the fluorescent column of FITC–Dx70 was not statistically significant. Therefore, the slightly larger Dx70 penetrated the glycocalyx in animals that were subjected to hemorrhage. This was true for both mesentery and skeletal muscle preparations (Table 1).

Table 1

Microvascular parameters following hemorrhage.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control animals</th>
<th>Hemorrhagic shock animals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Post-hemorrhage</td>
</tr>
<tr>
<td>Diameter (μm)</td>
<td>15.1±1.2</td>
<td>14.6±1.2</td>
</tr>
<tr>
<td>Red blood cell velocity (mm/s)</td>
<td>1.7±0.4</td>
<td>1.5±0.4</td>
</tr>
<tr>
<td>Blood flow (nl/s)</td>
<td>0.38±0.12</td>
<td>0.32±0.12</td>
</tr>
<tr>
<td>Wall shear rate (10^5 s$^{-1}$)</td>
<td>0.94±0.21</td>
<td>0.85±0.22</td>
</tr>
</tbody>
</table>

Data expressed as mean ± SEM for 20 vessels from 6 control animals and 17 vessels from 7 hemorrhagic shock animals. Data from cremaster and mesentery preparations are pooled.

* Statistically significant ($p<0.01$) decrease after shock, compared to the baseline (same group) and to the control group at the same time point.
The acquisition of microvascular diameter and red blood cell velocity following hemorrhagic shock. The system was implemented to allow a similar evaluation of physiological parameters such as functional capillary density, PO2 and hemoglobin O2 saturation can be incorporated into the system. There is no commercially available system to allow a similar evaluation of physiological parameters in vivo.

In vivo glycocalyx changes were investigated in two different preparations (muscle and mesentery) because they provide complementary and useful information on pathophysiological aspects of hemorrhagic shock (Harris et al., 1975; Hutchins et al., 1973; Torres Filho et al., 2001a, 2001b). While skeletal muscle constitutes the largest component of the body mass, the mesentery is part of the splanchnic circulation and has advantages for intravital microscopy, in particular for microvesSEL permeability (Childs et al., 2007). Glycocalyx research has been performed using both tissues, such as the mouse cremaster (Rubio-Gayosso et al., 2006), but while the rat mesentery has been used to study responses to ischemia–reperfusion and inflammation (Lipowsky et al., 2011), the rat cremaster has never been used to evaluate the endothelial glycocalyx. The mesentery and skeletal muscle are unlike tissues not only in morphology, microvascular density and metabolic demand, but also structural remodeling of the resistance vasculature (Aird, 2007; Golub and Pittman, 2005; Torres et al., 2008) due to pathological conditions. Therefore, although venular glycocalyx did respond similarly between the two preparations this does not exclude the possibility that the mechanisms involved in the shedding may be different.

The results suggest that low MW dextrans penetrated the glycocalyx since measurements of TR-Dx40 (in baseline) and FITC-Dx70 (post-hemorrhage) widths were not statistically different from the anatomical diameter. Our estimations of baseline glycocalyx thickness are similar to the values obtained in vivo for mouse cremaster capillaries using transillumination (Constantinescu et al., 2011) but higher than the values reported for venules using fluorescent microparticle image velocimetry (Smith et al., 2003). After hemorrhage, a reduction of over 50% in glycocalyx thickness was measured. A recent review on the glycocalyx (Weinbaum et al., 2007) concluded that “we have only scratched the surface in determining its structure and function”. Therefore, it is no surprise that almost no data exist on glycocalyx alterations following hemorrhage. To our knowledge, this is the first complete study using intravital microscopy showing degradation of glycocalyx in post-capillary venules after hemorrhagic shock. These results confirm our preliminary report using the rat spinotrapezius muscle (Torres Filho et al., 2009). In that study, image analysis of venular blood flow images such as functional capillary density, PO2 and hemoglobin O2 saturation can be incorporated into the system. There is no commercially available system to allow a similar evaluation of physiological parameters in vivo.

Discussion

The results show, for the first time, the application of intravital microscopy to evaluate dynamic changes in the glycoCalyx of living microvessels following hemorrhagic shock. The system was implemented to allow the acquisition of microvascular diameter and red cell vELocity in vivo while blood sampling and systemic parameters (such as blood pressure, Hb O2 saturation and respiratory rate) were simultaneously collected. Measurements of other important microcirculatory variables for microvessel permeability (Childs et al., 2007). Glycocalyx research has been performed using both tissues, such as the mouse cremaster (Rubio-Gayosso et al., 2006), but while the rat mesentery has been used to study responses to ischemia–reperfusion and inflammation (Lipowsky et al., 2011), the rat cremaster has never been used to evaluate the endothelial glycocalyx. The mesentery and skeletal muscle are unlike tissues not only in morphology, microvascular density and metabolic demand, but also structural remodeling of the resistance vasculature (Aird, 2007; Golub and Pittman, 2005; Torres et al., 2008) due to pathological conditions. Therefore, although venular glycocalyx did respond similarly between the two preparations this does not exclude the possibility that the mechanisms involved in the shedding may be different.

The results suggest that low MW dextrans penetrated the glycocalyx since measurements of TR-Dx40 (in baseline) and FITC-Dx70 (post-hemorrhage) widths were not statistically different from the anatomical diameter. Our estimations of baseline glycocalyx thickness are similar to the values obtained in vivo for mouse cremaster capillaries using transillumination (Constantinescu et al., 2011) but higher than the values reported for venules using fluorescent microparticle image velocimetry (Smith et al., 2003). After hemorrhage, a reduction of over 50% in glycocalyx thickness was measured. A recent review on the glycocalyx (Weinbaum et al., 2007) concluded that “we have only scratched the surface in determining its structure and function”. Therefore, it is no surprise that almost no data exist on glycocalyx alterations following hemorrhage. To our knowledge, this is the first complete study using intravital microscopy showing degradation of glycocalyx in post-capillary venules after hemorrhagic shock. These results confirm our preliminary report using the rat spinotrapezius muscle (Torres Filho et al., 2009). In that study, image analysis of venular blood flow images
obtained in vivo suggested that hemorrhagic hypotension caused glycocalyx degradation. A more extensive study using post-mortem electron microscopy images recently showed that glycocalyx was reduced in mesenteric post-capillary venules of rats subjected to hemorrhagic shock and treated with lactated Ringer’s (Kozar et al., 2011). Our current study presents in vivo data to suggest that the glycocalyx of post-capillary venules in the cremaster muscle show a similar effect following hemorrhagic shock. Taken together, these studies suggest that hemorrhage causes a widespread reduction in venular glycocalyx.

The impact of these changes in the pathophysiology of hemorrhagic shock is widely unknown. However, it is reasonable to consider that the magnitude of the changes may be significant since 50% or more of reduction in glycocalyx thickness was observed, both mesentery and skeletal muscle tissues were affected, and, if this effect is systemic, the overall vascular endothelial surface covered by the glycocalyx is potentially very large. Since the glycocalyx is involved in various processes at the microvascular level (Reitsma et al., 2007; Van Teeffelen et al., 2007; Weinbaum et al., 2007), it is reasonable to expect that these alterations are linked to the changes in microvascular permeability observed during hemorrhagic shock (Russell et al., 1995). It is also likely that the endothelial mechanotransduction of fluid shear stress is impaired (Weinbaum et al., 2007). Whether glycocalyx shedding is a relevant mechanism to promote neutrophil/leukocyte access to tissue during hemorrhagic shock and trauma is still a matter of debate. However, there is evidence to support this concept following ischemia and inflammation (Lipowsky et al., 2011; Mulvir and Lipowsky, 2002, 2004). Moreover, glycocalyx degradation by increased oxidative stress (oxidized LDL) stimulates leukocyte immobilization at the endothelial surface (Constantinescu et al., 2003).

Previous work in various species points towards a linkage between ischemia and glycocalyx degradation in heart (Becker et al., 2011; Chappell et al., 2011; Rehm et al., 2007), liver (van Golen et al., 2012) and mesentery (Mulvir and Lipowsky, 2004) in normovolemia. The in vivo data provided in the current work showing that greater glycocalyx decreases are correlated with larger reductions in blood flow (Fig. 2) confirm and expand this concept to hemorrhagic shock. However, in our protocol, the acquisition time points were fixed and glycocalyx thickness and blood flow were measured 90-min after the end of the blood removal. Therefore, it is not possible to ascertain whether glycocalyx was reduced at the onset of the low flow state or thickness decreased as a function of time during hemorrhagic shock.

Limitations

The technique of changes in glycocalyx permeability as a surrogate for the changes in thickness has been established for many years (Henry and Duling, 1999), and was adapted and applied for the current studies in a hemorrhagic shock model. However, a potential problem using the dye-exclusion technique is the application in vessels larger than 15 μm in diameter. In some cases, these vessels may present inhomogeneities and optical difficulties that may lower the resolution when measuring the fluorescent dye column (Weinbaum et al., 2007). In our study, we kept the microvessels on a fairly tight size range to avoid such errors but, in doing so, also restricted the range of studied vessels. We also limited the type of vessels although the methodology is suitable to arterioles and capillaries as well. There is recent evidence to support that glycocalyx changes occur in all types of microvessels in inflammation (Lipowsky et al., 2011). The endothelial glycocalyx structure includes various plasma proteins and soluble glycosaminoglycans tangled among the membrane bound elements. Since the reported measurements included the whole structure, without distinction between cell surface components and adsorbed proteins, it was not possible to identify which molecular components were more affected by the hemorrhage during the degradation process. For example, changes in plasma protein (content and/or composition) caused by hemorrhage may have resulted in changes in glycocalyx that could not be resolved by our methodology.

Conclusions

Intravital microscopy was successfully employed to estimate in vivo glycocalyx changes in post-capillary venules of rats subjected to hemorrhagic hypotension. The system was implemented in the same optical setup used for RBC velocity and microvessel diameter measurements, and allowed simultaneous recording of systemic physiological parameters. We showed that a significant reduction in glycocalyx thickness occurred in post-capillary venules of skeletal muscle and mesentery after hemorrhagic shock, especially those suffering large reductions in blood flow. These changes may have significant impact in shock pathophysiology. Various plasma proteins and soluble glycosaminoglycans are intertwined among the membrane bound elements within the endothelial glycocalyx structure. Therefore, future advances in resuscitation therapy for hemorrhagic shock will require detailed knowledge of the interplay between these fluids and the glycocalyx. The utilization of intravital microscopy and integrated systems such as the one described here may be important tools to help identify mechanisms by which resuscitation fluids may improve tissue recovery, survival and outcome following trauma and hemorrhagic shock.

Acknowledgments

The authors would like to thank M. Dale Prince, Daniel Darlington, Rodolfo DeGuzman, and Gary Muniz for their help during various phases of the study, James Aden for his help on statistical analysis, and Guy Drew (in memoriam) for his help with the computerized physiological data acquisition system. This study was supported in part by the US Army Combat Casualty Care Research Program, and was performed while the author Luciana Torres held a National Research Council Senior Research Associateship at the US Army Institute of Surgical Research and Ivo Torres Filho was employed by Premier Consulting & Management Services, Inc. and by Universidade do Estado do Rio de Janeiro (UERJ).

The views expressed herein are the private views of the authors and are not to be construed as representing those of the Department of Defense or the Department of the Army.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.mvr.2012.11.005.

References

