COGNITIVE ALIGNMENT WITH PERFORMANCE TARGETED TRAINING INTERVENTION MODEL: CAPTTIM

by

Quinn Kennedy, Ph.D.; MAJ Peter Nesbitt, USA; LTC Jon Alt, USA; and Ronald D. Fricker, Jr., Ph.D.

February 2015

Approved for public release; distribution is unlimited.

Prepared for: Army Research Office (ARO)
PO Box 12211
Research Triangle Park, NC 27709-2211
In this technical report, we propose that the use of two simple behavioral measures, in conjunction with neurophysiological measures, can be used to create a training intervention that has the potential to provide: (1) real-time notification as to when a training intervention is needed and (2) real-time information as to the type of training intervention that should be employed. The Cognitive Alignment with Performance Targeted Training Intervention Model (CAPTTIM) determines if a trainee’s cognitive state is aligned or misaligned with actual performance. When misalignment occurs, it indicates that a training intervention is needed. Neurophysiological markers, as captured by eyetracking and electroencephalography (EEG), can assist in determining why misalignment between cognitive state and performance occurred, leading to more effective and targeted training intervention. Because all measures are captured continuously in real time, this model has the potential to increase training efficiency and effectiveness in a variety of training domains. The model is illustrated with two case studies.
The report entitled “Cognitive Alignment with Performance Targeted Training Intervention Model: CAPTTIM” was prepared for and funded by the Army Research Office (ARO), PO Box 12211, Research Triangle Park, NC 27709-2211.

Further distribution of all or part of this report is authorized.

This report was prepared by:

Quinn Kennedy
Senior Lecturer of Operations Research

Peter Nesbitt
MAJ, USA

Ronald D. Fricker, Jr.
Professor of Operations Research

Reviewed by:

Johannes O. Royset
Associate Chairman for Research
Department of Operations Research

Released by:

Robert F. Dell
Chairman
Department of Operations Research

Jeffrey D. Paduan
Dean of Research
ABSTRACT

In this technical report, we propose that the use of two simple behavioral measures, in conjunction with neurophysiological measures, can be used to create a training intervention that has the potential to provide: (1) real-time notification as to when a training intervention is needed, and (2) real-time information as to the type of training intervention that should be employed. The Cognitive Alignment with Performance Targeted Training Intervention Model (CAPTTIM) determines if a trainee's cognitive state is aligned or misaligned with actual performance. When misalignment occurs, it indicates that a training intervention is needed. Neurophysiological markers as captured by eyetracking and electroencephalography (EEG) can assist in determining why misalignment between cognitive state and performance occurred, leading to more effective and targeted training intervention. Because all measures are captured continuously in real time, this model has the potential to increase training efficiency and effectiveness in a variety of training domains. The model is illustrated with two case studies.
TABLE OF CONTENTS

I. INTRODUCTION ... 1
 A. OVERVIEW .. 1
 B. OPERATIONALIZATION OF EXPLORATION AND EXPLOITATION VIA TME MONITORING OF SEQUENTIAL SAMPLE VARIANCES .. 2
 C. MEASURE OF REGRET AS A OBJECTIVE MEASURE OF DECISION PERFORMANCE .. 3
 D. USE OF NEUROPHYSIOLOGICAL MEASURES TO PROVIDE INSIGHTS INTO WHY NONOPTIMAL DECISION MAKING OCCURRED... 4
 E. CAPTTIM ... 4
 F. ILLUSTRATION OF CAPTTIM WITH CASE STUDIES FROM THE CONVOY TASK .. 7
 G. SEQUENTIAL DETECTION METHOD: USING LATENCY DATA TO DETERMINE EXPLORATION VS. EXPLOITATION COGNITIVE STATES. 8
 H. COMBINING SEQUENTIAL DETECTION METHODS WITH REGRET 9

II. SUMMARY .. 13
LIST OF FIGURES

Figure 1. Illustration of the main components of CAPTIM... 4

Figure 2. Adapted from Land & Hayhoe (2001), this figure illustrates how neurophysiological data can inform why nonoptimal decision making occurred. 5

Figure 3. Screen shot of the convoy task in piloting; a typical subject’s view of the task. We see that the trainee’s last choice caused 100 damage to the enemy (Damage to Enemy Forces) and a loss of −250 to friendly forces (Damage to Friendly Forces), resulting in a trial loss of −150 (not shown). The Accumulated Damage is 2,750. A positive Accumulated Damage value is desirable to the trainee. Notice that four routes are represented by the same image. 8

Figures 4a and 4b. Use of sequential sample variances in latency times to determine exploration and exploitation cognitive states. Shaded orange regions indicate periods of exploitation; shaded blue regions indicate periods of exploitation............. 9

Figures 5a and 5b. Figures 5a and 5b illustrate the concordant pattern between subject's cognitive state and their actual decision performance, as measured by regret, for two different subjects. Regret across the 200 trials is denoted by the black line.......... 10

Figure 6. The proportion of time that subject 33 experienced sleepiness, distraction, high engagement, or high cognitive workload on a given trial. Latency per trial is depicted as the blue line. .. 12
LIST OF TABLES

Table 1. Outline of the secondary component of CAPTIM: targeting the training intervention. Included is a description of each type of nonoptimal, decision-making error and a corresponding possible training intervention.. 6

Table 2. Comparison of subject 33’s eye gaze pattern compared to the overall sample. ... 11
EXECUTIVE SUMMARY

A. MOTIVATION

As the Army focuses on enhancing leader development and decision making to improve the effectiveness of combat forces, the importance of understanding how to effectively train decision makers and how experienced decision makers arrive at optimal or near-optimal decisions has increased. Currently, there is little understanding of how military decision makers arrive at optimal decisions and the measurement of decision-making performance lacks objectivity. The combined use of behavioral and neurophysiological measures in human-in-the-loop wargames has the potential to fill this knowledge gap and provide more objective measures of decision-making performance.

B. PURPOSE

This project’s purpose is to investigate the role between neurophysiological indicators and optimal decision making in the context of military scenarios, as represented in human-in-the-loop, wargaming simulation experiments. We focused on the development of optimal decision making when all subjects begin as naïve decision makers. Specifically, we attempted to identify the transition from exploring the environment as a naïve decision maker to exploiting the environment as an experienced decision maker, via statistical and neurological measures.

C. ARMY RELEVANCY AND MILITARY APPLICATION AREAS

Objectively defining, measuring, and developing a means to assess military optimal decision making has the potential to enhance training and refine procedures supporting more efficient learning and task accomplishment. Through the application of these statistical and neurophysiological models, we endeavor to further neuromathematics and, with it, advance the understanding and modeling of decision-making processes to more deeply comprehend the fundamentals of Soldier cognition.
D. SUMMARY OF CURRENT STATUS

We developed a wargame and conducted a study that demonstrated that it successfully elicits cognitive flexibility and reinforcement learning. Based on quantitative measures of exploration and exploitation, we developed the Cognitive Alignment with Performance - Targeted Training Intervention Model (CAPTTIM). Based on real-time measures of a trainee’s cognitive state and their actual performance, the model proposes a method for identifying (1) whether or not a trainee’s cognitive state is aligned or misaligned with actual performance, and (2) possible reasons as to why cognitive misalignment is occurring. We find that the combination of knowledge of cognitive state and actual decision performance gives insight into the optimality of trainees’ decisions.
I. INTRODUCTION

A. OVERVIEW

As the U.S. Army focuses on enhancing leader development and decision making to improve the effectiveness of its combat forces, the importance of understanding how to effectively train decision makers and how experienced decision makers arrive at optimal or near-optimal decisions has increased (Lopez, 2011). In order to understand how to effectively train decision makers to make optimal decisions, there are at least two components that need to be understood and quantitatively characterized. One such component is the cognitive state of the decision maker trainee: do they think they need to learn more about the environment before they can make good decisions or do they think they are making good decisions? In our work, we call this first cognitive state exploration: needing to learn about one's environment and actively seeking and responding to information in the environment. We refer to the latter state as exploitation: thinking that you have figured out the task and acting on that knowledge.

A second component of understanding optimal military decision making is having an objective measure of a trainee’s actual decision performance. Ideally, this measure should provide, at any point during the task, information as to how close a trainee is to making optimal decisions. It is important to note that both components, knowledge of the decision maker’s cognitive state and a measure of their actual decision performance are necessary to truly understand optimal military decision making. In the process of operationalizing the definitions of exploration and exploitation, and determining an objective measure of decision performance, we developed the Cognitive Alignment with Performance-Targeted Training Intervention Model (CAPTTIM). The purpose of this paper is to describe the model and then to illustrate how the model works through two case studies. We first describe how we operationalized exploration and exploitation, and our measure of optimal decision performance.
B. OPERATIONALIZATION OF EXPLORATION AND EXPLOITATION VIA TME MONITORING OF SEQUENTIAL SAMPLE VARIANCES

We hypothesize that variability in latency times could be used as a way to operationally define the cognitive states of exploration and exploitation. Specifically, we expect that high variability in latency times is indicative of seeking, responding, and synthesizing information that occurs with exploration, whereas low variability in latency times signifies exploitation.

One method for monitoring latency variability is via a sequential scheme, where the variance of a latency measure is repeatedly estimated from moving windows of data. Specifically, let x_i denote the latency at time i, $i = 2, 3, \ldots, 200$. Then, for some window of data of size $w + 1$, starting at time $i = w + 2$, sequentially calculate

$$s_i^2 = \frac{1}{w} \sum_{j=i-w}^{i} (x_j - \bar{x}_i)^2,$$

where

$$\bar{x}_i = \frac{1}{w + 1} \sum_{j=i-w}^{i} x_j.$$

The idea is to monitor $s_{w+2}^2, s_{w+3}^2, s_{w+4}^2, \ldots$ and when the sequence of sample variances is less than some threshold h, we declare that the subject has gone from exploration to exploitation.

For this method, one question is how to choose w. There are two considerations: (1) ideally $w + 1$ should be smaller than the smallest length of time that a subject might be in exploration mode when the experiment first starts, and (2) smaller values of w are better in the sense that the method will more quickly indicate the shift to exploitation, but $w+1$ cannot be so small that the sample standard deviation estimates are too variable because of excess noise. Ultimately, we will want to do some simulations to see what a good choice for w might be. Our initial guess would be something in the range of $5 \leq w \leq 20$ or so.

A second question is how to choose h. The planned approach will be to subjectively compare how well various values of h differentiate between exploration and exploitation, as determined by various other external measures, such as those from the
EEG, on a training set of data. The value of \(h \) that performs best will then be applied to the remaining data.

Finally, there is also a question of whether and how to detect if someone reverts from exploitation back to exploration. One possibility is to continue to monitor the sample variances and, once someone is in exploration mode, should \(s_i^2 > h \), conclude that they have reverted back to exploration. However, it may be that we need two thresholds, call them \(h_1 \) and \(h_2 \), where \(h_2 > h_1 \), which would work as follows. For someone in exploration mode, they switch to exploitation at time \(i \) when \(s_i^2 < h_1 \), while for someone in exploitation mode, they only switch to exploration at time \(i \) when \(s_i^2 > h_2 \). The key idea here is that having two thresholds with some separation between them may decrease inadvertent (i.e., excessive) switching back and forth between modes due to noise in the data.

C. MEASURE OF REGRET AS A OBJECTIVE MEASURE OF DECISION PERFORMANCE

Regret provides a measure of deviations from the ideal decision path, at any given point in a task. Regret is the difference of a trainee’s single trial outcome and the outcome from the ideal decision, given perfect knowledge. Less regret is better; on any given trial, regret can be zero if the trainee selects the best decision. More generally, absolute regret compares the outcome of trainee actions to the outcome generated by playing the optimal policy at each of the \(n \) trials. Given \(K \geq 2 \) routes and sequences \(r_{i,t} \), of unknown outcomes associated with each route \(i = 1,\ldots,K \), at each trial, \(t = 1,\ldots,n \), trainees select a route \(I_t \) and receive the associated outcomes \(r_{I_t,t} \). Let \(r_{i,t}^* \) be the best possible outcome possible from route \(i \) on trial \(t \) (Auer & Ortner, 2010). The regret after \(n \) plays \(I_1,\ldots,I_n \) is defined by

\[
R_n = \sum_{t=1}^{n} r_{i,t}^* - \sum_{i=1}^{n} r_{I_t,t}.
\]

Regret provides insights in the aggregate over the course of a set of \(n \) trials (i.e., total regret) and, when examined, per trial. Regret per trial provides a measure of a trainee’s ability to identify the best choice available at a given point in time.
D. USE OF NEUROPHYSIOLOGICAL MEASURES TO PROVIDE INSIGHTS INTO WHY NONOPTIMAL DECISION MAKING OCCURRED

Numerous studies indicate that eye-movement data via eye-tracking technology can provide valuable insights into subjects’ attention allocation patterns and underlying cognitive strategies during real-world tasks (Kasarskis, Stehwien, Hickox, Aretz, & Wickens, 2001; Marshall, 2007; Sullivan, Yang, Day, & Kennedy, 2011).

E. CAPPTIM

Figure 1 outlines the main component of CAPPTIM: determining if a trainee’s cognitive state is aligned or misaligned with their actual performance. When cognitive state is misaligned with actual performance, it indicates that a training intervention is required. As illustrated in Figure 1, a trainee typically would start in the yellow cell, in which they are in exploration mode and their decision performance is nonoptimal. Ideally, at some point during the task, the trainee transitions to the green cell, in which they are in exploitation mode and their decision performance is optimal, as indicated by low regret. When a trainee’s cognitive state is misaligned with actual decision performance, training intervention should occur (orange and red cells). Given that latency variance and regret can be measured in real time, the combination of these two measures can be used as a simple, near-immediate indicator of training intervention.

![Figure 1. Illustration of the main components of CAPPTIM.](image-url)
The model determines whether cognitive state, exploration or exploitation, is aligned or misaligned with actual decision performance, as measured by regret. The alignment or misalignment is an indicator of the quality of the decisions and the trainee’s mastery of the task. When misalignment occurs, a training intervention is required. Misalignment can occur for several reasons, such as lack of focus on the relevant information, distraction, sleepiness, or high cognitive workload.

Next, the incorporation of neurophysiological measures, such as eye tracking and electroencephalography (EEG), can provide an understanding as to why a trainee’s cognitive state and actual performance are misaligned (see Figure 2 and Table 1). Understanding why misalignment between cognitive state and decision performance occurred can inform the type of training intervention that should be done. For example, perhaps a trainee is in the red cell simply because they are not attending to the most relevant pieces of information. In this case, an attention allocation intervention could be employed. A trainee in the orange cell may be experiencing an overly high cognitive workload during the task and therefore does not have the cognitive capacity to realize that they are performing well. In this case, an intervention that uses very strong positive feedback could help the trainee realize that they actually have figured out the task. Thus, these initial results suggest that highly efficient and targeted training interventions can occur with the combined use of decision performance, time to make a decision, eye-tracking, and EEG information monitored in real time. In the next section, we illustrate CAPTTIM with two case studies.

Figure 2. Adapted from Land & Hayhoe (2001), this figure illustrates how neurophysiological data can inform why nonoptimal decision making occurred.
Table 1. Outline of the secondary component of CAPTTIM: targeting the training intervention. Included is a description of each type of nonoptimal, decision-making error and a corresponding possible training intervention.

<table>
<thead>
<tr>
<th>Error level</th>
<th>Description</th>
<th>Possible Training Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention (Level 1 errors)</td>
<td>Information from eyetracking indicates that the person was not looking at the salient information; therefore, optimal decision making is unlikely to occur.</td>
<td>Attention allocation that directs trainee’s gaze to the salient information.</td>
</tr>
<tr>
<td>Perception (Level 2 error)</td>
<td>Information from eyetracking indicates that the person glanced at the salient information, but not long enough for it to register in the brain.</td>
<td>Attention allocation that directs trainee’s gaze to the salient information.</td>
</tr>
<tr>
<td>Perception (Level 3 error)</td>
<td>Information from eyetracking indicates that the person looked at the salient information, and long enough for that information to register in the brain. However, EEG data shows that the person is experiencing one or a combination of the following: high cognitive workload, frequent distraction, or sleepiness.</td>
<td>Different training interventions depending on the EEG data. High cognitive workload: restart the task at a lower level of difficulty. Distraction: Focus the trainee’s attention on the task; reduce distraction in the surrounding area. Sleepiness: Trainee should resume the task at a later time.</td>
</tr>
<tr>
<td>Decision (Level 4 error)</td>
<td>This error occurs due to the person incorrectly using past experience or preconceived notions in making their decisions. Information from eyetracking and EEG rule out level 1-3 errors. The person is looking at the salient information and they are not experiencing high cognitive workload, distraction, or sleepiness.</td>
<td>Increasingly stronger visual/audio cues to the trainee that their current strategy is not optimal. Strong, immediate, positive feedback when the trainee makes optimal decisions.</td>
</tr>
</tbody>
</table>
F. ILLUSTRATION OF CAPTTIM WITH CASE STUDIES FROM THE CONVOY TASK

In Kennedy, Nesbitt, and Alt (2014), we developed and tested a simple wargame called the convoy task on 34 subjects, all of whom were military officers. In the convoy task, subjects see four identical roads and are instructed to select the route on which to send their convoy (see Figure 3). Their goal is to have the highest total damage score by maximizing the damage to enemy forces, while minimizing the friendly damage accrued over all trials. Through trial and error, subjects learn which routes have the best long-term payoffs in damage. On each trial, the subject is provided immediate feedback in the form of three separate pieces of information: a reward, a penalty, and a running total. The reward—the number of enemy forces damaged—is called Enemy Damage. On any given trial, enemy damage ranges from 50 to 100 damage. The penalty—the number of friendly forces damaged—is called Friendly Damage. Depending on the route chosen, friendly damage ranges from 0 to –1,250 damage. The running total is called Total Damage, defined as the previous trial’s value of Total Damage plus the previous trial’s Damage to Enemy Forces minus the previous trial’s Damage to Friendly Forces. The units of value are in damage. Subjects begin the task with 2,000 damage. The main outcome variable is Total Damage at the end of the 200 trials. A subject selects routes until the end, not knowing that the task will complete after 200 trials. The assumption is that the subject maintains some estimate of the value similar to Accumulated Damage for each route and updates the estimate after each trial. The accuracy of the estimate will vary between subjects, as will the manner in which the subjects incorporate information indexed by trial into their estimate.

Each route has its own scripted, ordered set of specified values. For example, every subject will find that the third time they pick route 1, it returns +100 enemy damage and –150 friendly damage. Even though these returns by route are set and are the same for each trainee, the games will progress differently due to the divergence of route selection between subjects.
Figure 3. Screen shot of the convoy task in piloting; a typical subject’s view of the task. We see that the trainee’s last choice caused 100 damage to the enemy (Damage to Enemy Forces) and a loss of –250 to friendly forces (Damage to Friendly Forces), resulting in a trial loss of –150 (not shown). The Accumulated Damage is 2,750. A positive Accumulated Damage value is desirable to the trainee. Notice that four routes are represented by the same image.

G. SEQUENTIAL DETECTION METHOD: USING LATENCY DATA TO DETERMINE EXPLORATION VS. EXPLOITATION COGNITIVE STATES

As illustrated in Figures 4a and 4b, we successfully used variability in trial-by-trial latency time to detect periods of exploration and exploitation cognitive states. A single explore/exploit latent threshold was developed for each subject, derived from twice the standard deviation above and below all latency times for 0 or 50 friendly damage (i.e., the baseline latency time) for that subject. Therefore, exploration was defined as trials in which the latency time was at least two standard deviations (SD) higher than the baseline latency time. Exploitation was defined as two SD lower than the baseline latency time. Note that these definitions do not take into account actual decision performance, but solely the subject’s cognitive state at a given time in the task. Figures 4a and 4b depict two distinct patterns of exploration and exploitation. Figure 4a
depicts an optimal exploration to exploitation transition (subject 14), whereas Figure 4b illustrates a pattern of primarily exploration throughout most of the task (subject 33).

Figures 4a and 4b. Use of sequential sample variances in latency times to determine exploration and exploitation cognitive states. Shaded orange regions indicate periods of exploitation; shaded blue regions indicate periods of exploitation.

H. COMBINING SEQUENTIAL DETECTION METHODS WITH REGRET

The combination of trial-by-trial information regarding the subject’s current cognitive state (exploration or exploitation) with actual performance (measures of regret) provides insights into whose cognitive state is aligned with actual performance. Across the 34 subjects who completed the convoy task, clear patterns of cognitive alignment and misalignment are seen. We illustrate two of these patterns, exhibited by subjects 14 and 33.
33, in Figures 5a and 5b. In Figures 5a through 5d, we see that although subjects 14 and 33 show distinct differences in cognitive state, their cognitive state is aligned with their measure of regret. Subject 14 goes through a period of exploration until about trial 90, at which point they are predominantly in exploitation mode. Consistent with this cognitive state pattern, subject 14’s regret is quite high until about trial 90, at which point it begins to steeply decrease. Recall that lower regret means that the subject’s decisions are verging towards the best possible decision. Thus, when subject 14’s cognitive state is in exploration mode, their regret is correspondingly high. When their cognitive state transitions to exploitation, their regret consistently decreases. In contrast, subject 33 maintains an exploration cognitive state throughout most of the task and, correspondingly, their regret is consistently high throughout the task.

Figures 5a and 5b. Figures 5a and 5b illustrate the concordant pattern between subject’s cognitive state and their actual decision performance, as measured by regret, for two different subjects. Regret across the 200 trials is denoted by the black line.
We then examined subject 33’s eye gaze and EEG data for indicators as to why subject 33 showed a nonoptimal pattern and poor decision performance. As outlined in Table 2, eyetracking data indicates that subject 33 had a similar eye gaze pattern as the overall sample and that this subject was correctly focusing on friendly damage to a much greater extent than total damage or enemy damage.

Table 2. Comparison of subject 33’s eye gaze pattern compared to the overall sample.

<table>
<thead>
<tr>
<th></th>
<th>Total Damage</th>
<th>Friendly Damage</th>
<th>Enemy Damage</th>
<th>Routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean gaze time (SD), (%)</td>
<td>5.49 (12.47)</td>
<td>16.73 (14.87)</td>
<td>6.55 (6.40)</td>
<td>71.23 (19.86)</td>
</tr>
<tr>
<td>Subject 33</td>
<td>2.90</td>
<td>13.96</td>
<td>7.78</td>
<td>75.26</td>
</tr>
</tbody>
</table>

Figure 6 illustrates the utility of combining neurophysiological and behavioral measures. Subject 33’s EEG data indicates that there were several periods throughout the task when they experienced high cognitive workload. Note that the peaks in latency time in the first several trials, and between approximately trials 160 to 170, overlap and/or precede peaks in periods of high cognitive workload. This subject, however, was also frequently distracted and was minimally engaged in the task. Given insight into the subject’s cognitive state throughout the task, it is not that surprising that subject 33 remained in an exploration state, had high regret, and scored 700 in total damage, which was well below the average of 2,402.94.
Figure 6. The proportion of time that subject 33 experienced sleepiness, distraction, high engagement, or high cognitive workload on a given trial. Latency per trial is depicted as the blue line.
II. SUMMARY

The purpose of this paper was to use case studies to illustrate CAPTTIM and its potential impact on current military training. CAPTTIM uses quantitative statistical methods and objective neurophysiological measures to complete the following actions in real time: (1) characterize a trainee’s cognitive state as either exploration or exploitation, (2) determine whether cognitive state is aligned or misaligned with actual performance, and (3) indicate ways in which the training intervention can be targeted to address why cognitive misalignment occurred. Because latency times and decision performance measures, such as regret, are simple behavioral measures that easily can be programmed into training software, this process can be completed in real time, with near-immediate notification that a training intervention is required. Neurophysiological measures, such as eyetracking and EEG, also are measured continuously and in real time, suggesting the potential for a near-immediate, targeted training intervention. Because of these characteristics, CAPTTIM has the potential to improve current military training efficiency and effectiveness.

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Research Sponsored Programs Office, Code 41
 Naval Postgraduate School
 Monterey, California

4. Richard Mastowski (Technical Editor)
 Graduate School of Operational and Information Sciences (GSOIS)
 Naval Postgraduate School
 Monterey, California

5. Dr. Virginia Pasour
 U.S. Army Research Office (ARO)
 Mathematical Sciences Division
 4300 S. Miami Blvd.
 Durham, NC 27703

6. Senior Lecturer Quinn Kennedy
 Operations Research Department
 Naval Postgraduate School
 Monterey, CA 93943

7. MAJ Peter Nesbitt, USA
 Operations Research Department
 Naval Postgraduate School
 Monterey, CA 93943

8. LTC Jon Alt, USA
 Operations Research Department
 Naval Postgraduate School
 Monterey, CA 93943

9. Professor Ronald D. Fricker, Jr.
 Operations Research Department
 Naval Postgraduate School
 Monterey, CA 93943