Evaluation of Dipsol IZ-C17 LHE Zinc-Nickel Plating

By:
Stephen Gaydos
Boeing – St. Louis

for
HCAT/JCAT Meeting
January 24, 2007
Title and Subtitle

Evaluation of Dipsol IZ-C17 LHE Zinc-Nickel Plating

Performance Organization

Boeing, P. O. Box 516, St. Louis, MO, 63166

Distribution/Availability Statement

Approved for public release; distribution unlimited

Notes

Intro

• Key Attributes for Cadmium Plating Alternatives:
 – Drop-In Replacement
 – Sacrificial to Steel When It Corrodes
 – Corrodes Slowly (Long Life in Salt Water)
 – Non-Embrittling to High Strength Steel
 • Plating Process
 • Maintenance Fluids

• So Why Zinc-Nickel Plating?
Cadmium Alternatives are Limited!
Proposed Cadmium Alternatives

• Cadmium Alternative Coatings for Steel
 – Aluminum (IVD-Sputter Aluminum, Alumiplate)
 – Beryllium (Too Toxic)
 – Zinc (Too Active – Corrodes Too Fast)
 – Magnesium (Extremely Active – Corrodes Rapidly)

• Zinc Alloys Can Reduce Activity of Zinc
 – Zinc-Nickel Preferred (Zn-Fe, Zn-Mn, Zn-Co, Zn-Sn, Sn-Zn Not Acceptable)
 • Zinc-Nickel is Sacrificial to Steel if Ni < ~18%
 • Nickel Alloyed to Zinc Has Low Corrosion Rate in Salt Water
 – No Excessive White Corrosion Products
Zinc-Nickel Alloys

• What is Best Ni Composition in Zinc-Nickel Plating?
 – 4 to 18% Appears to Give Good Corrosion Resistance and Sacrificial Protection to Steel
 – High % Ni Appears to Create a Non-Embrittling Plating Process

• What is Best pH for Zinc-Nickel Plating?
 – Alkaline Plating Appears to Be Easier to Use
 • Bath Easier to Maintain
 • Throwing Power Good and No Variance in % Ni
Zn-Ni Versions for Aerospace and Automotive Industry

• Aerospace Needs a Different Version of Automotive Zn-Ni Plating
 – High Strength Steel Used in Aerospace
 • Hydrogen Embrittlement
 • Fatigue Life
 – Corrosion Performance
 • Aerospace Parts Required to Have a Longer Service Life and Higher Reliability Than Automotive
Pre 2003 Zinc-Nickel Plating

• Pre 2003 There Were Two Zinc-Nickel Processes Being Considered at Boeing
 – Boeing Acid Zn-Ni Plating (with BoeNiz)
 • Passes ASTM F 519 Embrittlement Tests - BUT
 – Plating Process is Not Operator Friendly
 – ASTM F 346 Electronic Hydrogen Measurement (or Similar Method) Cannot Be Used
 – Dipsol IZ-260 Alkaline Zinc-Nickel Plating
 • Occasionally Fails ASTM F 519 Embrittlement Test
 • Plating Process is Operator Friendly - BUT
 – Needed a Nickel Strike to Pass ASTM F 519 on a Consistent Basis
LHE Alkaline Zn-Ni Plating

• C-17 Pollution Prevention Project - 2003 to 2005
 – Develop an LHE (Low Hydrogen Embrittlement) Version of Alkaline Zn-Ni Plating
 • Look at Different Zn-Ni Formulas with Nickel Composition of 5 to 17%
 • Remove Brighteners and Other Additives to Make Plating Dull (Porous)
 • Vary the Current Density
LHE Alkaline Zn-Ni Plating

• Boeing Teamed with Dipsol of America to Develop an LHE Alkaline Zn-Ni Plating
 – Dipsol Produces IZ-260 Alkaline Zn-Ni Plating
 • Used by Several DoD and Aerospace Subcontractors
 – IZ-260 Has 5 to 8% Nickel – Balance Zinc
 • Dedicated R&D Laboratory in Tokyo, Japan
 • Excellent Technical Support at Laboratory in Livonia, MI
 • Dipsol Understands Zn-Ni Plating Chemistry
2003-05 Test Results

• Based on Successful Test Results an LHE Alkaline Zn-Ni Formula was Selected for Further Development
 – Identified as Dipsol IZ-C17 (13 to 17% Ni)
• IZ-C17 Had Good Corrosion Performance
• IZ-C17 Passed Hydrogen Embrittlement and Re-Embrittlement Testing with 1a.1 and 2a
 – Re-Embrittlement Test Specimens Exposed to Distilled Water and 3.5% Salt Water
Zinc-Nickel Corrosion Test

IZ-C17 LHE Zn-Ni

Cadmium

ASTM B 117 – 816 Hours Exposure
IZ-C17 – HE Test Results

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Specimen Type</th>
<th>ID No.</th>
<th>200 Hour Result (Pass/Fail)</th>
<th>ISL After 200 Hour Test (% NFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set #1 - Plate Entire Specimen</td>
<td>1a.1</td>
<td>AQ3789</td>
<td>Pass</td>
<td>80</td>
</tr>
<tr>
<td>Set #1 - Plate Entire Specimen</td>
<td>1a.1</td>
<td>AQ5767</td>
<td>Pass</td>
<td>85</td>
</tr>
<tr>
<td>Set #1 - Plate Entire Specimen</td>
<td>1a.1</td>
<td>AQ3623</td>
<td>Pass</td>
<td>90</td>
</tr>
<tr>
<td>Set #1 - Plate Entire Specimen</td>
<td>1a.1</td>
<td>AQ3675</td>
<td>Pass</td>
<td>80</td>
</tr>
<tr>
<td>Set #2 - Plate at 3 Times Current Density</td>
<td>1a.1</td>
<td>AS1279</td>
<td>Pass</td>
<td>80</td>
</tr>
<tr>
<td>Set #2 - Plate at 3 Times Current Density</td>
<td>1a.1</td>
<td>AS1487</td>
<td>Pass</td>
<td>90</td>
</tr>
<tr>
<td>Set #2 - Plate at 3 Times Current Density</td>
<td>1a.1</td>
<td>AS1026</td>
<td>Pass</td>
<td>85</td>
</tr>
<tr>
<td>Set #2 - Plate at 3 Times Current Density</td>
<td>1a.1</td>
<td>AS1248</td>
<td>Pass</td>
<td>85</td>
</tr>
<tr>
<td>Set #3 - Plate with No Preplate Acid Activation</td>
<td>1a.1</td>
<td>AS1385</td>
<td>Pass</td>
<td>95</td>
</tr>
<tr>
<td>Set #3 - Plate with No Preplate Acid Activation</td>
<td>1a.1</td>
<td>AS1085</td>
<td>Pass</td>
<td>90</td>
</tr>
<tr>
<td>Set #3 - Plate with No Preplate Acid Activation</td>
<td>1a.1</td>
<td>AS1040</td>
<td>Pass</td>
<td>90</td>
</tr>
<tr>
<td>Set #3 - Plate with No Preplate Acid Activation</td>
<td>1a.1</td>
<td>AS1281</td>
<td>Pass</td>
<td>95</td>
</tr>
<tr>
<td>Set #4 - Plate with Preplate Acid Activation</td>
<td>1a.1</td>
<td>AS1264</td>
<td>Pass</td>
<td>90</td>
</tr>
<tr>
<td>Set #4 - Plate with Preplate Acid Activation</td>
<td>1a.1</td>
<td>AS1198</td>
<td>Pass</td>
<td>90</td>
</tr>
<tr>
<td>Set #4 - Plate with Preplate Acid Activation</td>
<td>1a.1</td>
<td>AS1421</td>
<td>Pass</td>
<td>90</td>
</tr>
<tr>
<td>Set #4 - Plate with Preplate Acid Activation</td>
<td>1a.1</td>
<td>AS1148</td>
<td>Pass</td>
<td>85</td>
</tr>
<tr>
<td>Set #5 - Plate with Preplate Acid Activation</td>
<td>2a</td>
<td>44911-12</td>
<td>Pass</td>
<td>-</td>
</tr>
<tr>
<td>Set #5 - Plate with Preplate Acid Activation</td>
<td>2a</td>
<td>44911-47</td>
<td>Pass</td>
<td>-</td>
</tr>
<tr>
<td>Set #5 - Plate with Preplate Acid Activation</td>
<td>2a</td>
<td>44911-54</td>
<td>Pass</td>
<td>-</td>
</tr>
<tr>
<td>Set #5 - Plate with Preplate Acid Activation</td>
<td>2a</td>
<td>44911-1</td>
<td>Pass</td>
<td>-</td>
</tr>
</tbody>
</table>

Hydrogen Embrittlement Results for IZ-C17
IZ-C17 – Re-Embrittlement Tests

Hydrogen Re-Embrittlement Results for IZ-C17

<table>
<thead>
<tr>
<th>Re-Embrittlement Test Fluid</th>
<th>Specimen Type</th>
<th>ID No.</th>
<th>150 Hour Result (Pass/Fail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled Water</td>
<td>1a.1</td>
<td>AS1224</td>
<td>Pass</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>1a.1</td>
<td>AS1166</td>
<td>Pass</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>1a.1</td>
<td>AS1368</td>
<td>Pass</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>1a.1</td>
<td>AS1169</td>
<td>Pass</td>
</tr>
<tr>
<td>3.5% Salt (NaCl) Water</td>
<td>1a.1</td>
<td>AS1001</td>
<td>Pass</td>
</tr>
<tr>
<td>3.5% Salt (NaCl) Water</td>
<td>1a.1</td>
<td>AS1415</td>
<td>Pass</td>
</tr>
<tr>
<td>3.5% Salt (NaCl) Water</td>
<td>1a.1</td>
<td>AS1328</td>
<td>Pass</td>
</tr>
<tr>
<td>3.5% Salt (NaCl) Water</td>
<td>1a.1</td>
<td>AS1286</td>
<td>Pass</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>2a</td>
<td>44911-42</td>
<td>Pass</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>2a</td>
<td>44911-134</td>
<td>Pass</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>2a</td>
<td>44911-41</td>
<td>Pass</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>2a</td>
<td>44911-76</td>
<td>Pass</td>
</tr>
<tr>
<td>3.5% Salt (NaCl) Water</td>
<td>2a</td>
<td>44911-42</td>
<td>Pass*</td>
</tr>
<tr>
<td>3.5% Salt (NaCl) Water</td>
<td>2a</td>
<td>44911-134</td>
<td>Pass*</td>
</tr>
<tr>
<td>3.5% Salt (NaCl) Water</td>
<td>2a</td>
<td>44911-41</td>
<td>Pass*</td>
</tr>
<tr>
<td>3.5% Salt (NaCl) Water</td>
<td>2a</td>
<td>44911-76</td>
<td>Pass*</td>
</tr>
</tbody>
</table>

* 2a Test Specimens that passed the 150 hour distilled water test were used for the salt water test.
IZ-C17 Thickness and Adhesion

- IZ-C17 Has Good Adhesion
 - Passes Bend-To-Break Tests
- Thickness Control is Very Good
2006 – 2007 Test Objectives

• Install Plating Tank at Boeing – St. Louis with Dipsol IZ-C17
 – Perform More Hydrogen Embrittlement Tests
 – Perform Fatigue Tests
 – Perform Lubricity Tests
 – Optimize Operating Parameters
 • Verify Operating Limits of Plating Bath
 – Plate Parts with Complex Geometries
 • Determine Need for Auxiliary Anodes and Special Tooling
 – Plate ID of Tubular Parts

• Qualify IZ-C17 for C-17 Program
 – Create Draft DPS for IZ-C17
 • Identify Process Controls
 • Hydrogen Embrittlement Test Methods
 • Select Repair Procedures
2006 Status

• IZ-C17 Tech Bulletin (Draft) Prepared
 – Information Provided by Dipsol and Boeing

• Purchased and Installed Plating Tank and Support Equipment
 – IZ-C17 Chemical Received From Dipsol of America – Livonia, MI
 • Original Zn-Ni Chemicals Came From Dipsol – Japan

• Bare Test Specimens Prepared
IZ-C17 Tech Bulletin

DIPSOL OF AMERICA, INC.
34005 Schoolcraft Road, Livonia, MI 48150
TEL (734) 261-0633, TOLL FREE: 1-866-DIPSOL-1
FAX (734) 261-0655, E-mail: main@dipsolamerica.com
www.dipsolamerica.com

ZINC AND ZINC ALLOY PLATING PROCESSES

LHE Zinc Nickel system

DIPSOL IZ-C17

Low Hydrogen Embrittlement Alkaline Zinc Nickel Alloy Plating
IZ-C17 Zn-Ni Plating Process

1. TCE Vapor Degrease or Solvent Clean with MPK
2. Grit Blast with aluminum oxide (120 grit or finer) at ~ 60 psig
3. Rinse in water to remove loose grit
4. Apply LHE zinc-nickel plate: IZ-C17 – 3 A/dm2 – RT – 30 to 45 minutes (produces 0.3 to 0.6 mils)
5. Rinse
6. Embrittlement Relief Bake at 375 +/- 25°F for 24 hours. Bake within 4 hours after plating
7. Rinse
8. Chromate Conversion Coating: Apply IZ-258 @ 140°F, 60 seconds
9. Rinse
10. Dry @ < 140°F – 10 minutes
IZ-C17 Plating Tank

- 60 L Plating Tank Installed in Laboratory
Conversion Coat Tank

• Installed IZ-258 Chromate Conversion Coating Tank
2006 Status (Cont.)

- IZ-C17 Test Plan Prepared
 - Hydrogen Embrittlement (1a.1, 1a.2, 2a)
 - Adhesion and Metallurgy
 - Corrosion Testing (Salt Spray and Galvanic)
 - Fluid Immersion (ASTM F 483)
 - Lubricity (Fasteners)
 - Strippability (BCA – Ammonium Nitrate pH 10)
 - Throwing Power (JCAT Method and Tubes)
 - Fatigue
2006 Status (Cont.)

• IZ-C17 Tank Up and Running Since 8-18-06
 – Chemistry Meets Specifications
 • Need to Use only Nickel Anodes (or Ni Plated Steel)
 – Passed Thickness, Composition and Adhesion Tests
 – Passed Hydrogen Embrittlement for Type 1a.1, 1a.2 and 2a Specimens

• Prepared Corrosion Specimens (4”x6” Steel)
• Prepared Fatigue Bars
• Prepared Fluid Immersion Test Specimens (ASTM F 483 1”x2” Steel Specimens)
• Prepared Throwing Power Test Specimens
Type 2a HE Testing
Fatigue Test Specimens
Throwing Power Test
Throwing Power Test

#1
Open End
Test Panel

Ni

12"

#2: D = 2 to 3 inches (two anodes)
#2A: D = 10 to 12 inches and only one anode at open end

Test Panel
Open End

D

#3

Test Panel
Open End

12"
2007 Activity

• Prepare Zn-Ni Plated Fasteners (In Work)
• Perform Tests on Zn-Ni Plated Specimens
• Plate Tube IDs With Internal Anodes
• Prepare Specimens with Different Zinc – Nickel Ratios in Plating Bath
• Prepare DPS Draft Specification for LHE Zn-Ni Plating
• Support JCAT Phase II and III JTP