EA-6B HVOF-Coated Landing Gear: Post-Deployment Inspection Results

Tai Ngin
Materials Engineer
NAVAIR FRCSE, 43410
1. REPORT DATE
SEP 2009

2. REPORT TYPE

3. DATES COVERED
00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
EA-6B HVOF HVOF-Coated Landing Gear: Post Post-Deployment Inspection Results

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Air Station, Fleet Readiness Center Southeast (FRCSE), Jacksonville, FL

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
ASETSDefense 2009: Sustainable Surface Engineering for Aerospace and Defense Workshop, August 31 - September 3, 2009, Westminster, CO. Sponsored by SERDP/ESTCP.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT
unclassified
b. ABSTRACT
unclassified
c. THIS PAGE
unclassified

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
27

19a. NAME OF RESPONSIBLE PERSON

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
Outline

• Background
• HVOF Procedure
• Previous Results
• EA-6B Results
• Future Work
Background

• Electrolytic hard chrome (EHC)
 – Wear resistance
 – Corrosion resistance

• Uses hexavalent chromium (Cr$_{6}^{+}$)
 – Carcinogen, OSHA controlled
 – Expensive to dispose
Background

• IPT’s for chrome alternatives
 – HCAT: Hard Chrome Alternatives Team
 – ESTCP: Environmental Strategic Technology Certification Program
 – JG-PP: Joint Group on Pollution Prevention
• Validation Project: HVOF Thermal Spray
 – Environmentally acceptable
 – Superior performance to EHC
Background

• High Velocity Oxygen Fuel (HVOF)
 – Environmental Coatings
 – Wear Resistant Coatings
• FRCSE Applications
 – F404, F414, J52, TF34
 – Drive shafts, combustor cans
HVOF Procedure

• HVOF Process
 – Combustion of fuel gas and oxidizer (accelerant gas)
 – Feed powder into supersonic gas stream
 – Impact particles onto surface with high temperature and high velocity
HVOF Procedure

• HVOF Advantages
 – Low porosity
 – High hardness
 – High adhesive bond strength
 – Higher density

• Fits into NAVAIR LEAN Processes
 – Increases throughput
 – Decrease turn around time
 – Reduce costs and simplifies work processes
HVOF Procedure

• HVOF Coating
 – METCO DIAMALLOY 2005 NS
 • 83WC-17Co powder mixture
 – Advantages over EHC
 • Hardness
 • Wear Resistance
 • Fatigue Resistance
HVOF Procedure

• Concerns for HVOF
 – Unknown response for:
 • Carrier-based landings
 • Saltwater corrosive environments
 • Coating susceptible to aqueous and gaseous corrosion
 – Require validation and demonstration in actual naval environments
Previous Work

• Timeline
 – 10/1999: EA-6B Landing Strut HVOF coated
 • Spalling issues
 • High strains at large stresses
 • Flight clearance on hold
 – 09/2004: EA-6B successfully landed on USS Carl Vinson
 • HVOF coating successful
 • Major project milestone
EA-6B Landing Gear

• Current Landing Gear Strut Piston
 – AISI 4330 V Mod
 • σ_Y = 180-185 ksi
 • σ_{UTS} = 220-240 ksi
 – Coated
 • METCO DIAMALLOY 2005 NS
 – Ground finished
 • Ra = 8-16 μin
 – Superfinished
 • Ra = 2-4 μin
EA-6B Results

• EA-6B (163395) Tours of Duty
 – 2004-2005 VAQ 138/142
 – 2005-2009 VAQ 209 (Reserve Squad)

• Relatively short time-at-sea
 – 153 Catapult shots
 – 154 Arrested landings

<table>
<thead>
<tr>
<th>Year</th>
<th>Flight Hours</th>
<th>Landings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>2005</td>
<td>605</td>
<td>207</td>
</tr>
<tr>
<td>2006</td>
<td>543</td>
<td>177</td>
</tr>
<tr>
<td>2007</td>
<td>192</td>
<td>85</td>
</tr>
<tr>
<td>2008</td>
<td>109</td>
<td>54</td>
</tr>
<tr>
<td>2009</td>
<td>70</td>
<td>38</td>
</tr>
<tr>
<td>Total</td>
<td>1552</td>
<td>571</td>
</tr>
</tbody>
</table>
EA-6B Results

• Strut Disassembly
 – Performed due to leak in lower seal

HVOF coated axle and piston during tear down

HVOF coated piston during disassembly
EA-6B Results

• Collar Assembly
 – No indications of wear or other damage
EA-6B Results

• Collar Assembly
 – Roughness check

 HVOF coated area
 Surface finish Ra = 7 μin;
 Ra = 10-11 μin at outer most edge shown

 Chrome plated area
 Surface finish Ra = 6-7 μin
EA-6B Results

• HVOF Axle

HVOF on Axle Journals, edges in good condition, coating appeared to be in very good condition
EA-6B Results

• Collar Bushing
 – The original item was discarded after disassembly
 – Operators reported part corroded
 – Corrosion typical for this part in service.
EA-6B Results

• Failed Seal
 – Seal wear ("flat spots") at 0° and 180°
 – Possible service in Middle East: sand entrapment / intrusion issues
 – Failure analysis will be performed by Trelleborg Sealing Solutions (POC: John Nash)
EA-6B Results

• Strut Disassembly - Barrel
 – Visual Inspection
 • Roughness Check
 – Clean
 – Vapor Degrease
 – Fluorescent Penetrant Inspection (FPI)
 – Re-superfinish
 • Recheck roughness

Disassembly of collar and seal retainer in location of leak
EA-6B Results

• HVOF Piston Surface
 – Roughness check

Surface finish measured Ra 3-4 μin

Surface finish Ra 8-10 μin in center section

Surface finish measured Ra 11-18 μin in area 2” to 8” from base
EA-6B Results

• HVOF Piston Surface
 – Upper Seal Area

Finish Roughness (Ra) = 2-3 μin
EA-6B Results

• HVOF Piston Surface
 – Lower Seal Area
EA-6B Results

• Corrosion issues
 – FPI initially found no indications
 – After superfinishing, pits found in the coating
 – Co binder highly susceptible to salt corrosion
Future Work

• First/Best option: Keep Current Coating
 – Re-superfinish current pitted HVOF coating

• Goal: Remove pits, establish Ra of 2-4 μin
 – Want coating thickness above minimum tolerance
 – If not, then part is in a state of Functionally Unusable Component Technology
Future Work

• Second/Last option: **Apply New Coating**
 – Grind pitted coating to parent metal
 – Recoat the part to return to service
 • Apply chrome coating -OR-
 • Reapply HVOF coating

• Complications
 – Future HVOF coating choice
 • DIAMALLOY 2005: 83WC-17Co
 • AMDRY 5843 (AMS 2447-9): 86WC-10Co-4Cr
 – FUNDING!?!?
 • “Hubba, hubba, hubba, money, money, money…who do you love?”
Acknowledgments

• Luis Carney
 – Senior Materials Engineer, FRCSE 43410

• Jon Devereaux
 – Materials Engineer, NASA KSC

• Erik Mueller
 – Materials Engineer, FRCSE 43410

• Steve Sabatella
 – EA-6B FST Engineer, FRCSE 43310

• Richard Vander Straten
 – HVOF Program Manager, ES3
Questions?

Due to NAVAIR restrictions, responses to questions are not authorized.