Cadmium Alternatives: Zinc-Nickel Electroplating & Repair of Aluminum Coatings

Presented at:
SERDP/ESTCP Workshop
February 27, 2008

Presented By:
Stephen Gaydos
Technical Fellow – M&P
Boeing – St. Louis
Environmental Assurance
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 FEB 2008</td>
<td></td>
<td>00-00-2008 to 00-00-2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium Alternatives: Zinc-Nickel Electroplating & Repair of Aluminum Coatings</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boeing</td>
<td>5d. PROJECT NUMBER</td>
</tr>
<tr>
<td>P. O. Box 516, St. Louis, MO, 63166</td>
<td>5e. TASK NUMBER</td>
</tr>
<tr>
<td></td>
<td>5f. WORK UNIT NUMBER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boeing, P. O. Box 516, St. Louis, MO, 63166</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Finishing and Repair Issues for Sustaining New Military Aircraft Workshop, February 26-28, 2008, Tempe, AZ. Sponsored by SERDP/ESTCP.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
<td>Same as Report (SAR)</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zinc-Nickel Performance Update
LHE Alkaline Zn-Ni Plating Development

• Project Goal
 – Develop an LHE (Low Hydrogen Embrittlement) Version of Alkaline Zn-Ni Plating for HSS Aircraft Parts
 • Look at Different Zn-Ni Formulas
 • Remove Brighteners and Other Additives to Create Low Embrittling Plating Process
 – Based on Successful Test Results an LHE Alkaline Zn-Ni Formula was Selected for Further Development
 – Identified as IZ-C17 (contains 13 to 17% Ni)
 – Has Good Corrosion Performance
 – Passes Hydrogen Embrittlement and Re-Embrittlement Testing with ASTM F 519 Ty 1a.1 and 2a Test Specimens
 • Re-Embrittlement Test Specimens Exposed to Distilled Water and 3.5% Salt Water
IZ-C17 Zn-Ni Plating Tank

- 60 L Plating Tank Installed in Laboratory
IZ-C17 Zn-Ni Plating Process

IZ-C17 Zn-Ni Process
- Solvent Clean
- Grit Blast
- Water Rinse
- IZ-C17 Zn-Ni Plate
- Rinse
- Embrittlement Bake
- Rinse
- Chromate Conversion Coat
- Rinse

Cadmium Process
- Solvent Clean
- Grit Blast
- Water Rinse
- Cadmium Plate (Cd + CN⁻)
- Rinse
- Chromic Acid Neutralize (Cr⁶⁺)
- Rinse
- Embrittlement Bake
- Nitric Acid Activate (HNO₃)
- Rinse
- Chromate Conversion Coat
- Rinse

Zn-Ni Process is Easier and Less Hazardous Than Cadmium Plating
IZ-C17 Zinc-Nickel Corrosion Tests

- LHE Cadmium Plating (Top) and IZ-C17 Zinc-Nickel Plating (Bottom)
 - Scribed ASTM B 117 Salt Spray Test after 1000 Hours Exposure
 - No Red Rust in Scribed Areas
IZ-C17 Zn-Ni Adhesion and Thickness

• IZ-C17 Has Good Adhesion and Uniform Thickness

Sample # 3061
Thickness = 0.45 +/- 0.02
DAC Adhesion = Pass

Sample # 3062
Thickness = 0.47 +/- 0.02
DAC Adhesion = Pass

Sample # 3063
Thickness = 0.44 +/- 0.04
Mil Spec Adhesion = Pass

LHE IZ-C17 Zinc-Nickel on Steel
JCAT Throwing Power Test

Hull Cell Test Panel Inserted In Plastic Tube

Tube with Hull Cell Test Panel Placed in Zn-Ni Plating Bath
IZ-C17 Type 2a HE Testing
IZ-C17 Fatigue Test Specimens
2007 Testing of IZ-C17 Zn-Ni Plating

• Numerous Qualification Tests with IZ-C17 LHE Zn-Ni Plating Completed in 2007 – Report Issued to Air Force
 – Hydrogen Embrittlement (1a.1, 1a.2, 2a)
 – Adhesion and Metallurgy
 – Corrosion Testing (Salt Spray and Galvanic)
 – Fluid Immersion (ASTM F 483)
 – Lubricity (Fasteners)
 – Strippability
 • Ammonium Nitrate (pH 10)
 • Dilute Hydrochloric Acid
 – Throwing Power (JCAT Method)
 – Fatigue
Zinc-Nickel vs. Cadmium Score Sheet

<table>
<thead>
<tr>
<th>Properties</th>
<th>LHE Cadmium</th>
<th>IZ-C17 LHE Zinc-Nickel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosion - Salt Spray</td>
<td>1000 hours</td>
<td>+ 1000 hours</td>
</tr>
<tr>
<td>Hydrogen Embrittlement (1a.1)</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>Hydrogen Re-Embrittlement - Water</td>
<td>Marginal</td>
<td>Pass</td>
</tr>
<tr>
<td>Hydrogen Re-Embrittlement - Salt Water</td>
<td>Fail</td>
<td>Pass</td>
</tr>
<tr>
<td>Throwing Power</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>Fatigue</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Lubricity</td>
<td>Good</td>
<td>Needs Lubricant</td>
</tr>
<tr>
<td>Electrical Properties</td>
<td>Good</td>
<td>TBD</td>
</tr>
<tr>
<td>Fluid Immersion</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Strippability</td>
<td>Good</td>
<td>Good*</td>
</tr>
</tbody>
</table>

* Dilute HCl Solution - Strips Zn-Ni in 10 seconds and is Non-Embrittling
Evaluation of IZ-C17+

- Dipsol has Improved the LHE Zinc-Nickel Plating Bath with Better Stability and Longer Plating Bath Life
 - IZ-C17+
- IZ-C17+ is Similar to IZ-C17 But Contains Better Stabilizers and Bath Life Extenders
- Preliminary Tests Have Shown that IZ-C17+ is Equivalent in Performance to IZ-C17
 - Tests Performed with Tri-Chrome Conversion Coating
- SBIR Project to Implement LHE Zn-Ni Plating at Air Force ALC
 - Boeing Partnered with ES3
 - IZ-C17 or IZ-C17+ Will Be Used for This Application
IZ-C17+ Zn-Ni Plating Process

IZ-C17+ Zn-Ni Process
- Solvent Clean
- Grit Blast
- Water Rinse
- IZ-C17+ Zn-Ni Plate
- Rinse
- TriCr Conversion Coat
- Rinse
- Embrittlement Bake

IZ-C17 Zn-Ni Process
- Solvent Clean
- Grit Blast
- Water Rinse
- IZ-C17 Zn-Ni Plate
- Rinse
- Embrittlement Bake
- Rinse
- Chromate Conversion Coat
- Rinse

TriCr CC on Zinc-Nickel Is Not Affected by the 375ºF Baking Temperature

IZ-C17+ with TriCr CC Process is Easier and Less Hazardous Than IZ-C17 with HexCr CC
2008 Tasks to Implement Zn-Ni

- Issue DPS for LHE Zn-Ni Plating
- Set-Up Larger Tank (200 to 400 Gallon) for Production Process Control Testing
- Continue to Evaluate Tri-Chrome Conversion Coating on Zn-Ni
- Develop an Accelerated Hydrogen Embrittlement Test
- Perform Hydrogen Re-Embrittlement Tests with Maintenance Fluids (Cleaners and Paint Strippers)
- Perform Additional Fatigue Tests
- Evaluate Performance of Aircraft Paint Systems on Zn-Ni
- Develop Touch-Up Brush Plating to Repair Zn-Ni
- Evaluate Electrical Bonding and Grounding Performance
- Identify Lubricant System for Zn-Ni Plated Fasteners
Repair of Aluminum Coatings Update
Current IVD Al Repair Methods

• IVD Aluminum Repair Methods on HS Steel Alloys
 – Condition 1: Bare IVD Al on Steel
 • Touch-Up with Brush Cd Plating
 – Condition 2: Painted IVD on Steel
 • Remove rust and scratches
 • Apply two coats epoxy primer
 • Apply one coat sprayable or brushable sealant
 • Apply two coats polyurethane top coat

• IVD Al Repairs Shall Not Exceed 5% of Total Part Area or 0.5 in² per Individual Area
 – Repairs That Exceed Limits
 • IVD Al Shall Be Stripped and Reapplied
Alternative AI Coatings and Repairs

- IVD Aluminum Coating Alternatives Being Developed or Implemented for High Strength Steel
 - Sputter Aluminum
 - Electroplated Aluminum – Alumiplate
 - APCVD Aluminum
- An Environment Friendly Repair Method is Needed for These Environment Friendly Coating Processes
 - Sn-Zn Brush Plating
 - Zn-Ni Brush Plating
 - SermeTel 249/273
 - Cold Spray Aluminum
Brush Plating

• Potential Candidates Considered
 – LDC 5030 Sn-Zn and SIFCO 4018 Zn-Ni
• LDC 5030 Sn-Zn Selected Because of No-Bake Hydrogen Embrittlement Performance
• Aluminum Surface Preparation for Brush Plate
 – Bare Aluminum – Poor Adhesion
 – Zincate Brush Treat – Inconsistent Results
 – Nickel Strike – Good Adhesion
• Corrosion and Adhesion Tests Performed with Brush Sn-Zn and Cadmium Applied to Damaged IVD Aluminum Steel Test Panels
Repair Test Specimens

Corrosion Test Specimen

Mask 1"

4"

6"

Adhesion Test Specimen

Mask 3/8"

4 or 6"

1"

4130 Steel with IVD Aluminum Applied
Brush Tin-Zinc on IVD Al

Brush Cd Repair on IVD Al

Brush Tin-Zinc Repair on IVD Al
Brush Plating Properties

- Adhesion of LDC 5030 Brush Sn-Zn on IVD Aluminum is Good with the Nickel Strike
- Fatigue Test Results for Brush Sn-Zn are Similar to Brush Cd Plate
SermeTel 249/273

• Repair Specimens Prepared for JG-PP JTP Phase I
 – SermeTel 249/273 Applied to Bare Steel for Hydrogen Embrittlement and Adhesion Testing in Phase I
 • Failed Adhesion but Passed HE Tests
• Additional Type 1a.1, 1x4 and 4x6 Samples Prepared and Shipped to CTC for Phase II Testing
 – No Results to Report
Cold Spray Aluminum

- Cold Spray – Particles Impacting on Substrate Do Not Melt
- Process Adaptable to Wide Variety of Operating Conditions (Supply Gases, Gas Temperature, Powders, Feeder Designs, Nozzle Designs, Manual or Robotic Application)
Cold Spray Aluminum

- Need Robust and Easy to Operate Portable Cold Spray Equipment For Repair of Aluminum Coatings
- Equipment and Processes Available from Several Different Companies
 - Dymet
 - Centerline
 - K-Tech
 - ARL
 - Innovati
 - Delphi
 - ASB
 - CGT
 - Etc.
Dymet

- Steel Test Samples Sent to Obinsk Center for Powder Spray (OCPS) for Application of Cold Spray Al with Dymet Equipment
- Coating Appearance was Acceptable But System Did Not Seem to be Operator Friendly
Dymet Results

• Test Results for Steel Samples Received from OCPS with Dymet Cold Spray Al Coatings
 – Good Adhesion
 – Good Corrosion Performance (1000 Hr B 117 Scribed – No Rust)
 – Process is Non-Embrittling to HS Steel
 – Thickness 1.5 to 2 mil

Passed Bend to Break Adhesion Tests
Centerline SST

- Centerline SST Unit is Improved Version of Dymet Equipment
SST Results for Cold Sprayed Al

- Adhesion Testing Carried Out on Steel and IVD Aluminum
 - Passed Tape Adhesion Test
 - Passed Glass Bead Burnish Adhesion Test at 60 psig
 - This is the Adhesion Test Used for IVD Al
 - Some Flaking on Bend-to-Break Test

- Corrosion Test Results Carried Out on Damaged IVD Aluminum Steel Panels
 - Exceeded MIL-DTL-83488 Requirement
Corrosion Test of SST Cold Spray Al

Cold Sprayed Al
Applied Robotically

Cold Sprayed Al
Applied Manually

ASTM B 117 1008 Hours

0 Hours

1008 Hours
Cold Spray Test Plans

- Purchase Centerline SST Portable Unit
 - Develop Process to Repair Damaged Aluminum Coatings
 - Thickness
 - Adhesion
 - Corrosion
 - Fatigue
 - Hydrogen Embrittlement
- Continue to Work with Other Cold Spray Vendors and Laboratories to Repair
 - Damaged Alclad Aircraft Skins
 - Damaged Aluminum Aircraft Parts
Questions?