Qualification and Implementation of HVOF Coatings on H-60 Main and Tail Landing Gear

R. Luchenta & R. Guillemette
Sikorsky Aircraft
Materials & Process Engineering
Title: Qualification and Implementation of HVOF Coatings on H-60 Main and Tail Landing Gear

Performing Organization: Sikorsky Aircraft, Materials & Process Engineering, 6900 Main Street, Stratford, CT, 06615

Abstract:
26th Replacement of Hard Chrome and Cadmium Plating Program Review Meeting, January 24-26, 2006, San Diego, CA. Sponsored by SERDP/ESTCP.

DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

Supplementary Notes:
Same as Report (SAR)

Number of Pages: 11

Security Classification:
- Report: Unclassified
- Abstract: Unclassified
- This Page: Unclassified

Limitation of Abstract:
Same as Report (SAR)

Number of Pages:
- Report: 11
UH-60L/M HVOF Coatings Qualification for Landing Gear Systems

• **Program Objective**
 – Replace EHC plating with an HVOF coating on main and tail landing gear systems
 – Coatings must not detract from component performance
 – Main driver of this program are environmental and health concerns and field reliability

• **Program Status**
 – Completed an industry trade study
 – Selected candidate coating for EHC replacement
 – Proposed an approach for qualification to customer
 – Testing activities to begin this year
UH-60L – Chromium Plated Landing Gear Components

<table>
<thead>
<tr>
<th>Component Nomenclature</th>
<th>Base Material</th>
<th>Heat Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Landing Gear Components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Landing Gear Piston</td>
<td>4340 per MIL-S-8844</td>
<td>200KSI</td>
</tr>
<tr>
<td>Main Landing Gear Piston and Cylinder</td>
<td>4340 per MIL-S-8844</td>
<td>200KSI</td>
</tr>
<tr>
<td>Main Landing Gear Axle</td>
<td>4340 per MIL-S-8844</td>
<td>260 – 280 KSI</td>
</tr>
<tr>
<td>Drag Beam Pivot Pin</td>
<td>4340 per MIL-S-8844</td>
<td>260 – 280 KSI</td>
</tr>
<tr>
<td>Tail Landing Gear Components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tail Landing Gear Fork</td>
<td>7175-T74 per AMS 4149</td>
<td>T74</td>
</tr>
<tr>
<td>Tail Landing Gear Axle</td>
<td>4340 per MIL-S-5000</td>
<td>180 KSI</td>
</tr>
<tr>
<td>Tail Landing Gear Piston</td>
<td>7075-T73 per QQ-A-367</td>
<td>T73</td>
</tr>
<tr>
<td>Tail Landing Gear Piston and Cylinder</td>
<td>7075-T73 per QQ-A-367</td>
<td>T73</td>
</tr>
</tbody>
</table>
UH-60L HVOF Landing Gear Team Members

- SAC Implementation Team
 - Landing Gear Design
 - Structures
 - Materials and Process
 - Reliability and Maintainability
 - ILS
 - Ground Test
 - Purchasing
 - Programs

- Suppliers Team
 - Landing Gear Assembly
 - Coating Suppliers
 - Seal Suppliers

- Hard Chromium Plate Alternatives Team (HCAT)
Airworthiness Qualification Requirements for the Qualification of High Velocity Oxygen Fuel (HVOF) Tungsten Carbide Coating on the UH-60 Landing Gear Shock Struts Pistons and Cylinders (TN 11561) 25 Mar 05

1. Fatigue life of HVOF must be equivalent to chromium plated component. Substantiation is by analysis or test.

2. Tensile, yield strength, % e, coating adhesion, pitting corrosion, SCC properties of the HVOF coupons shall demonstrate equivalency to chromium plated coupons.

3. Applied stress and strain at the onset of spalling of the HVOF coating must exceed the maximum service stress and strain.

4. Seal life and leakage performance of HVOF must be equivalent or better than chromium.

5. The finished diameter of the coated part must meet the current drawing requirements.
HVOF Program Tasks

1. Collect Existing Data
 • SAC
 • HCAT
2. Analysis of Data
3. Select Candidates
4. Publish White Paper to Substantiate Selection
5. Sikorsky Internal Process Certification
 • Fatigue
 • Residual Stress
 • Strain Threshold
 • Adhesion
 • Microstructure
 • Hardness
 • Extensive reference to HS15580
6. First Article Testing
 • Metallurgical
 • Distortion
 • Adhesion
 • Corrosion
 • Geometrical effects
7. Structural Analysis
 • Fatigue life
 • Maximum service stress and strain
8. Structural/Wear (Ground) Analysis
Materials Testing

<table>
<thead>
<tr>
<th>Coupons</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Residual stress</td>
<td>• 1<sup>st</sup> article destructive exam</td>
</tr>
<tr>
<td>• Strain to Fracture</td>
<td>• Metallurgical exam</td>
</tr>
<tr>
<td>– Onset of cracking</td>
<td>• Distortion evaluation</td>
</tr>
<tr>
<td>– Onset of spalling</td>
<td>• Adhesion</td>
</tr>
</tbody>
</table>
| • Adhesion | • Corrosion (primarily at interface with other coats)
| • Microstructure | • Hardness |
| • Hardness | • Substrate heating effect |
| • Metallurgical exam | |
Tail Landing Gear Piston
SH-60B TLG Piston, Cleveland Pneumatic PN 2012C4, Base Metal: 300M Steel, Coated with SDG2057 WC-CoCr
Qualification Test matrix for Navy H-60 Tail Gear Piston

- Coating adhesion
- Tensile
- Fatigue (HCF)
- Fatigue (LCF)
- Cyclic stress/strain
- Metallurgical
- Wear test (bench scale)

- Drop test (full scale)
- Corrosion
 - Open section
 - Crevice testing
- First article destructive evaluation/validation
- NAVAIR review
- Lead-the-fleet testing
Qualification Test Matrix for UH-60 tail Landing Gear Fork

- Adhesion (coupon)
- Metallurgical (coupon & full scale)
 - hardness
 - porosity/uniformity
 - heat/mechanical effect on substrate
- Fatigue (coupon)
- Fatigue after exposure to salt fog (coupon)
- Wear test
- Corrosion testing (full scale)
- Army AMCOM review
- Lead-the-fleet testing