Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>JUN 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. REPORT TYPE</td>
<td></td>
</tr>
<tr>
<td>3. DATES COVERED</td>
<td>00-00-2010 to 00-00-2010</td>
</tr>
<tr>
<td>4. TITLE AND SUBTITLE</td>
<td>Xtalic</td>
</tr>
<tr>
<td>5a. CONTRACT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5b. GRANT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5c. PROGRAM ELEMENT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5d. PROJECT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5e. TASK NUMBER</td>
<td></td>
</tr>
<tr>
<td>5f. WORK UNIT NUMBER</td>
<td></td>
</tr>
<tr>
<td>6. AUTHOR(S)</td>
<td></td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>Xtalic Corporation, 260 Cedar Hill Street, Marlborough, MA, 01752</td>
</tr>
<tr>
<td>8. PERFORMING ORGANIZATION REPORT NUMBER</td>
<td></td>
</tr>
<tr>
<td>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td></td>
</tr>
<tr>
<td>10. SPONSOR/MONITOR’S ACRONYM(S)</td>
<td></td>
</tr>
<tr>
<td>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</td>
<td></td>
</tr>
<tr>
<td>12. DISTRIBUTION/AIDSABILITY STATEMENT</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
<tr>
<td>13. SUPPLEMENTARY NOTES</td>
<td>DOD Vehicle Workshop, 15-16 June 2010, Grand Rapids, MI. Sponsored by SERDP/ESTCP.</td>
</tr>
<tr>
<td>14. ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>15. SUBJECT TERMS</td>
<td></td>
</tr>
<tr>
<td>16. SECURITY CLASSIFICATION OF:</td>
<td></td>
</tr>
<tr>
<td>a. REPORT</td>
<td>unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
</tr>
<tr>
<td>17. LIMITATION OF ABSTRACT</td>
<td>Same as Report (SAR)</td>
</tr>
<tr>
<td>18. NUMBER OF PAGES</td>
<td>26</td>
</tr>
<tr>
<td>19a. NAME OF RESPONSIBLE PERSON</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Xtallic Technology

• Crystal (xtal) size and structure strongly influence materials properties
 – Wear
 – Corrosion resistance
 – Appearance

• Xtalic’s technology dynamically controls crystal size and structure
 – Proprietary chemistry
 – Patented waveforms

• Xtalic’s materials deliver dramatically enhanced performance
Waveform control makes it possible to create tailored, nanocrystalline structures chosen to optimize performance.
Engineering the Optimum

• Xtalic tunes the crystal structure to optimize properties
 – Wear
 – Corrosion protection

• A crystal structure can be selected that creates optimal properties within a single layer
• Multiple layers with tailored properties are created in a single process step

• Dynamic control of crystal size and structure: crystal size, structure and alloy composition are variably controlled

• Superior composite performance is achieved

Dynamic Nanostructure Control™
Xtalic Delivers

• Enhanced performance
 – Wear, Corrosion, Appearance

• Multiple properties in a single step
 – Potential for reduced thickness and material usage
 – Fewer steps required, less energy required

• Low environmental and worker health and safety impact
 – Replaces Hexavalent Chromium in a range of applications
 – In some cases, only workable alternative to Chromium

• Easily implemented production solution
Xtalic Application Areas

• Decorative – XBRIGHT®
 – Distinctive, high performance, environmentally friendly decorative coating

• Electronics – XTRONIC®
 – Very low porosity, slow diffusing barrier layer coating for electronics applications

• Functional – XPROTECT®
 – Engineering coating for functional wear + corrosion applications (typically replacing hexavalent chrome or electroless Ni)
XPROTECT®

- Excellent corrosion protection
- Superior wear performance
- Improved properties under heat
- Replicates substrate R_a
- Good coating uniformity
- Chromium free
XPROTECT®: Superior Wear

Light-optical micrographs of the pin-on-disc wear tracks

- XPROTECT (3N load)
- Hard Cr (3N load)
- EN (1N load)

Profilometer measurements of wear tracks

Vertical Distance [µm]

Lateral Distance [µm]

0 200 400 600 800 1000
0 2 4 6 8 10 12
XPROTECT
Hard Cr
EN
NSST (B117) of 25 microns of XPROTECT on 1566 precision ground rods with no post finishing

Cr (typical results for a proprietary chromium deposit)

> 4400 hours
XPROTECT: Corrosion Protection

12 µm XPROTECT coated steel shafts after NSST, with exposure times as shown.

12 µm hard Cr coated commercial steel shafts after 48 hours of NSST
XPROTECT – Hydraulic Shaft Example

• 12 µm XPROTECT™ coated hydraulic shaft
• 500 hours of exposure to NSST
• No corrosion sites; rating = 10
• Sample size: 2”x12”

4 inches
XPROTECT® – Shock Absorber Example

- 25 µm XPROTECT coated shock absorber
- 500 hours of exposure to NSST
- Sample size: 0.62”x12”
- Significant defects from transport of unplated substrates led to isolated corrosion spots.

4 inches

Rating (10 = no red rust)

Hours in NSST

9.0 9.2 9.4 9.6 9.8 10.0

0 100 200 300 400 500
XPROTECT ® – Shock Absorber Example

Head to Head with Hard Chromium

• Compression adhesion test
 – Equivalent to Chromium

• NSST Corrosion test
 – XPROTECT > 744 hours
 – Chromium < 250 hours

• Russian Mud Test
 – XPROTECT pass

• Coefficient of friction with 300N Load
 \[
 \left(\frac{\text{XPROTECT with no post-finishing}}{\text{Hard Chromium with post-finishing}} \right) > 0.5
 \]

• Endurance wear testing
 – In Progress
XPROTECT®: Strengthens Under Heat

- Simple heat treat
 - Six hours at 191º C (375º F)
- Increased hardness
 - HV$_{100g}$ = 900 - 950
 - 15% increase
- Stable structure
 - Key properties maintained or enhanced

Customer-Reported Sample Hardness Data

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Temperature</th>
<th>Time</th>
<th>Hardness, HVN100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>N/A</td>
<td>679</td>
</tr>
<tr>
<td>2</td>
<td>375º F (191º C)</td>
<td>3</td>
<td>758</td>
</tr>
<tr>
<td>3</td>
<td>375º F (191º C)</td>
<td>8</td>
<td>840</td>
</tr>
<tr>
<td>4</td>
<td>375º F (191º C)</td>
<td>24</td>
<td>862</td>
</tr>
<tr>
<td>5</td>
<td>500º C</td>
<td>2</td>
<td>1040</td>
</tr>
<tr>
<td>6</td>
<td>500º C</td>
<td>5</td>
<td>1078</td>
</tr>
<tr>
<td>7</td>
<td>500º C</td>
<td>98</td>
<td>888</td>
</tr>
</tbody>
</table>
Plating Uniformity, Complex Geometry

Direct comparison, XP to hard Cr

Gear with aspect ratio 1.2:1

<table>
<thead>
<tr>
<th></th>
<th>XP</th>
<th>Hard Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>Avg peak thickness, µm</td>
<td>66</td>
</tr>
<tr>
<td>21</td>
<td>Avg valley thickness, µm</td>
<td>7.2</td>
</tr>
<tr>
<td>3.6</td>
<td>Peak to valley ratio</td>
<td>9.2</td>
</tr>
</tbody>
</table>
Hydrogen Embrittlement Resistance

• Notch tensile specimens plated with 50 µm of XPROTECT®
 • no post-bake
• Five samples tested per ASTM F519 (standard specimen, 1a.1)
• All samples passed loading requirement of 200 hours at 75% of ultimate tensile strength
• Samples do not require baking to pass the test
Confidential to Xtalic Corporation

Plating at Scale: Evaluation Process

Xtalic pilot line in Marlborough, MA
- 375 liter (100 gallon) capacity
- Maximum part dimension up to ~50 cm (20 in)
- Part weights up to ½ ton

Xtalic partner shops
- Up to 1500 gal (6000 l) capacity
- Maximum part dimension up to ~4 m (12 ft)
- Part weights up to 1 ton

Xtalic
Xtalic: A Platform Technology

- Dynamically controlled structure allows tailored materials properties
- Multiple alloy systems maximize the accessible property sets
- Enhanced performance can be achieved across many markets
 - Aerospace
 - Automotive
 - Security
 - Medical Device
 - Home Appliances
 - Consumer Goods
 - Sports Equipment
 - Electronics
 - Communications
 - Industrial Equipment
Contact Us

Xtalic Corporation
Marlborough, MA 01752
(508) 485-9730
www.xtalic.com

Joseph Montano, Product Manager
jmontano@xtalic.com
Conclusions

Performance properties are summarized in the table below:

<table>
<thead>
<tr>
<th>Coating</th>
<th>Sliding Wear Resistance</th>
<th>NSST Corrosion Resistance</th>
<th>Surface Texture</th>
<th>Coating Distrib.</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPROTECT®</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>XPROTECT®, HT</td>
<td>++</td>
<td>+++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EN-P↑</td>
<td>-</td>
<td>++</td>
<td>0</td>
<td>+++</td>
</tr>
<tr>
<td>EN-P↑, HT</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coating</td>
<td>Load [N]</td>
<td>COF</td>
<td>Penetration depth [µm]</td>
<td>Wear rate [mm³/hr]</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>-----</td>
<td>------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>XP</td>
<td>3</td>
<td>0.5</td>
<td>0.2</td>
<td>1.0x10⁻³</td>
</tr>
<tr>
<td>XP, 400ºC/4hr</td>
<td>3</td>
<td>-</td>
<td>0.1</td>
<td>4.0x10⁻⁴</td>
</tr>
<tr>
<td>Hard Cr</td>
<td>3</td>
<td>0.85</td>
<td>1.5</td>
<td>2.3x10⁻²</td>
</tr>
<tr>
<td>EN (high P)</td>
<td>1</td>
<td>0.62</td>
<td>10.5</td>
<td>2.9x10⁻¹</td>
</tr>
</tbody>
</table>

Non-lubricated Pin-on-Disc Apparatus with a Tungsten Carbide Pin
XPROTECT® Corrosion Protection

Hard Chromium

• Failures were rapid at 12 µm \(< 4\) hours
• Functional chromium deposits with a thickness of 25 µm (1 mil) will last in NSST for between (Jones) 10 and 500 hours depending upon pre-finishing, plating and post finishing.

XP Coating

• XP coatings with between 12 and 25 µm (0.5 to 1.0 mils) lasted in NSST for between
 • 350 and > 4400 hours
• When the coatings did corrode, the corrosion sites were typically very small and did not expand rapidly.
XPROTECT ® Corrosion: Acid Data

Performance properties XPROTECT ® vs. Cr

<table>
<thead>
<tr>
<th>Coating</th>
<th>Corrosion Rates, mm/year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HCl</td>
</tr>
<tr>
<td>Acid 10% (v/v) Temp, C</td>
<td></td>
</tr>
<tr>
<td>XPROTECT (Immersion)</td>
<td>0.0030</td>
</tr>
<tr>
<td>XPROTECT (EC) (minimum)</td>
<td>0.054¹</td>
</tr>
<tr>
<td>Cr²</td>
<td>rapid</td>
</tr>
</tbody>
</table>

¹Room Temp - 5 day test
²Corrosion data from Uhlig

24
XPROTECT ® : Corrosion Protection

Corrosion Panels after 1000 hrs B-117 Exposure
(Note: Panel 1 was exposed for only 24 hrs)

Sample #	**Hours Exposed**	**Observation**
1 | 24 | Red rust
2 | >1000 | No red rust
3 | >1000 | 10 isolated spots (small)
4 | >1000 | No red rust
5 | >1000 | 4 isolated spots (small)
6 | >1000 | No red rust
Plating Uniformity, Shaft/Rod

- Sample dimensions: 25 mm diameter and 300 mm length
- Tank anodes used on each side of part; no conforming anodes
- 300 mm anode to cathode separation
- Plating time: 1 hour

<table>
<thead>
<tr>
<th>Location around rod (degrees)</th>
<th>Thickness (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.9</td>
</tr>
<tr>
<td>90</td>
<td>40.9</td>
</tr>
<tr>
<td>180</td>
<td>39.9</td>
</tr>
<tr>
<td>270</td>
<td>40.6</td>
</tr>
<tr>
<td>Average</td>
<td>40.9</td>
</tr>
</tbody>
</table>

- Uniformity around the circumference (eddy current): ±2.4%