Nanocrystalline Cobalt-Phosphorus Electroplating as an Alternative to Hard Chromium Electroplating

Ruben A. Prado, CEF
(Principal Investigator)
Inorganic Coatings SME
NAVAIR Associate Fellow

John E. Benfer, M.S.
(Co-Principal Investigator)
Corrosion Engineering Team Lead
NAVAIR Associate Fellow

ASETS Defense Workshop
Sustainable Surface Engineering for Aerospace & Defense
(August 2012)
Nanocrystalline Cobalt-Phosphorous Electroplating as an Alternative to Hard Chromium Electroplating

Title: Nanocrystalline Cobalt-Phosphorous Electroplating as an Alternative to Hard Chromium Electroplating

Authors:

Naval Air Systems Command, 47123 Buse Road, Patuxent River, MD, 20670

Performing Organization:

Naval Air Systems Command, 47123 Buse Road, Patuxent River, MD, 20670

Report Date:

AUG 2012

Report Type:

3. DATES COVERED

00-00-2012 to 00-00-2012

Sponsoring Agency:

Naval Air Systems Command, 47123 Buse Road, Patuxent River, MD, 20670

Report Number:

Approved for public release; distribution unlimited

Abstract:

Security Classification:

Unclassified
Project Team

NAVAIR:

- PI: Ruben Prado, NAVAIR JAX
- Co-PI: Jack Benfer, NAVAIR JAX

Integran Technologies:

- Diana Facchini, Neil Mahalanobis
 Integran – Technology Development & Optimization, Dem/Plan
- Keith Legg, Rowan Technology Group, Libertyville, IL, -- CBA, reports, Implementation Assessment, ASETSDefense website

<table>
<thead>
<tr>
<th>Name</th>
<th>NAVAIR CP - Requirements and Demonstrations across NAVAIR programs and OEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Kestler</td>
<td>NAVAIR CP - Requirements and Demonstrations across NAVAIR programs and OEM</td>
</tr>
<tr>
<td>Mike Firth</td>
<td>NAVAIR LK - Ground Support Equipment requirements and components</td>
</tr>
<tr>
<td>Steve Brown</td>
<td>NAVAIR PAX - Test requirements and Qualification, JTP</td>
</tr>
<tr>
<td>Denise Aylor</td>
<td>NAVSEA - Leveraged Effort, NAVSEA Systems Requirements, Mil-Spec development</td>
</tr>
</tbody>
</table>
Demonstrate/Validate pulsed electrodeposition of Nanocrystalline Cobalt-Phosphorous (nCoP) alloy coatings as a Hard Chrome electroplating alternative for DoD manufacturing and repair.

- Fully define deposition parameters and properties
- Establish production plating processes (i.e., cleaning, racking, masking, activation, pre-plates, stripping, etc.)
- Demonstrate/Validate performance
- Develop Eng Tech Data Packages
 - Manuals
 - Specifications
 - Eng. Circular
- Initiate DoD and OEM approval process

Demo Site: FRC JAX
NAVAIR Fleet Readiness Center Jacksonville

- Dem/Val line in operation since 2006
- 250 gallon Plating Tank
- Pulse Power supply (1500A Peak Current)
- Activation tank used for most all alloys
- CIP # 0466 Established

Process Line

Dem/Val Tank Pulse Power Supply

Activation Tank Power Supply
Coating applied by electrodeposition

- Pulsed Current Waveform Engineering
 - Frequency (Hz) = 1/(ton+toff)
 - Duty Cycle (%) = ton/(ton+toff) x 100

Electrodeposited nanocrystalline materials

- *Favors nucleation of new grains over growth*
- Results in an ultra-fine grain structure
- Uniform throughout thickness

Leads to unique properties

- ↑ Yield Strength, wear, ultimate tensile strength
- ↑ Density
- ↓ Coefficient of friction

Smaller grain size impedes dislocation movement and increases yield strength
Technical Approach (Nanocrystalline Co-P Deposits)

Process Comparison

<table>
<thead>
<tr>
<th></th>
<th>Nanovate™ CoP</th>
<th>EHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposition Method</td>
<td>Electrodeposition (Pulse)</td>
<td>Electrodeposition (DC)</td>
</tr>
<tr>
<td>Part Geometries</td>
<td>LOS and NLOS</td>
<td>LOS and NLOS</td>
</tr>
<tr>
<td>Efficiency</td>
<td>85-95%</td>
<td>15-35%</td>
</tr>
<tr>
<td>Deposition Rate</td>
<td>0.002"-0.008" /hr</td>
<td>0.0005"-0.001" /hr</td>
</tr>
<tr>
<td>Emission Analysis</td>
<td>*Below OSHA limits</td>
<td>Cr+6</td>
</tr>
</tbody>
</table>

*Co PEL is 20 µg/m³

Cathode Efficiency

Approaches 100% Efficiency

- ≈5X faster than Chrome plating
- Increased throughput
- One nCo-P tank can replace several hard chrome tanks
- Bath is Stable
Overview of Prior Work

Electrochemical Modeling

Phase I Characterization (JTP) Tests

<table>
<thead>
<tr>
<th>Requirement</th>
<th>nCoP</th>
<th>EHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Smooth, uniform, free of pits/defects</td>
<td>Pass</td>
</tr>
<tr>
<td>Adhesion</td>
<td>No separation between deposit/substrate</td>
<td>Pass</td>
</tr>
<tr>
<td>Ductility</td>
<td>> 2%</td>
<td>Pass 2.9%</td>
</tr>
<tr>
<td>Grain Size</td>
<td><20 nm (HCP)</td>
<td>Pass 6 nm(HCP)</td>
</tr>
<tr>
<td>Porosity</td>
<td><1/32", <15 pits/150 in², <5 pits/30 in²</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Chemical Strip Demonstrated

Demonstrated on T-45 Pivot at JAX

Plated Pivot

Stripped Pivot

Masking Evaluation/Downselect

- MICCRO XP-2000 by Tolber Chemical Division Inc
- ENPLATE Stop Off No.1 by Enthone OMI Inc.
- MICCROSshield by Tolber Chemical Division Inc
- MT-1024 by Masktec Inc.
- MT-920 by Masktec Inc.
Overview of Prior Work

Rotating Beam Fatigue Test

- Bare
- nCoP
- EHC

4340 substrate (UTS: 260-280 ksi)

Cycles to Failure

Stress (ksi)

nCoP hardness comparable to EHC after heat treatment at standard conditions for hydrogen embrittlement relief (375°F)

nCoP Heat Treat Study

- EHC
- Nanovate CR

Microhardness (HV100)

Baking Time (hrs)

OSD Coupon Testing Completed

Taber Abrasion, Impact, Adhesion, Corrosion

Carburized 1018 Steel Coupons

EHC Plating of T-45 Pivot Assy

NAVAIR JAX Base line Plating - Dem/Val
nCoP Plating of T-45 Arresting Hook Pivot

Mask/Rack

nCoP Plate

As Plated

Ready for Field Demo
Dem/Val Component on Aircraft!

- T-45 Arresting Hook Pivot Assembly
- Installed Mar 2012 (BUNO# 165479) ≈ 30 Traps

Dem/Val Component installed on T-45 Goshawk Trainer Aircraft NAS Meridian, MS

nCoP Plated Dem/Val Component
Phase II OSD Rig Testing:

Cylinder Testing Cycle (1 mil coating):

1. Cylinder cycling 1000 cycles then
2. ASTM B117 10 days

To date, two nCoP cylinders have completed a cumulative total of 100 days ASTM B117 and 10,000 cylinder cycles with **no reported failure due to seal leakage.**

nCoP

- **10,000 cycles/ 100 Days**
 - No Failures

EHC

- **4000 cycles/ 40 Days**
 - EHC-1 Still in test
 - EHC-2 Failed
LHD1 Stern Gate

- Replace Cr plated shaft with nCoP
- Perform Field Demonstration
- Evaluate Performance as compared to baseline
Assess wear performance vs. chrome as an ID actuator
- Currently conducting dimensional inspections
- ECD is Q4/2012
- Test developed by Messier-Dowty
 - 20,000 Cycles
 - Observe effect of surface finish, seal types, and hardening condition

Plating/Grinding Completed for Messier Testing

<table>
<thead>
<tr>
<th>Coating</th>
<th>Surface Finish (Microinches)</th>
<th>Piston Seal</th>
<th>Rod Seal</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHC</td>
<td>4-6, 12-16</td>
<td>Buna-N Tee Seal</td>
<td>Buna-N Tee Seal</td>
</tr>
<tr>
<td>nCoP</td>
<td>4-6, 12-16</td>
<td>Nitrile Butadiene Rubber</td>
<td>Nitrile Butadiene Rubber</td>
</tr>
<tr>
<td>nCoP HE Bake</td>
<td>4-6, 12-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nCoP Max Heat Treat</td>
<td>4-6, 12-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHC</td>
<td>12-16</td>
<td>Viton Tee Seal Synthetic Rubber Fluoropolymer Elastomer</td>
<td>Viton Tee Seal Synthetic Rubber Fluoropolymer Elastomer</td>
</tr>
<tr>
<td>nCoP</td>
<td>12-16</td>
<td>PTFE Cap</td>
<td>Spring Energized PTFE</td>
</tr>
<tr>
<td>EHC</td>
<td>12-16</td>
<td>Buna-N O-Ring/Back-up - Nitrile Butadiene Rubber O-Ring</td>
<td>Buna-N O-Ring/Back-up - Nitrile Butadiene Rubber O-Ring</td>
</tr>
</tbody>
</table>

*$121K In kind funding (Messier-Dowty)
Technical Progress
(P-3 Producingibility Item)

P-3 Uplock Roller Pin

- P-3 Producingibility Item at JAX
- Field evaluation Planned
- Interested Air Programs?

Existing chrome Plated Roller Pin Shown on P-3 MLG

nCoP Plated Uplock Roller Pins
Technical Progress
(Spotting Dolly Lifting Pin)

- Visit to Solomons to assess Spotting Dolly Lifting Arm Pin
- Obtain Lifting Pins for Plating
- Fit/Function Confirmed
- Scheduled for Plating
Technical Progress

(Joint Test Protocol - Demonstration/Validation)

- **JTP Testing in Progress**
- **T-45 Dem/Val component on Aircraft**
- **50% of Core Tests Completed**
- ✔️ = Completed Tests, T = In Test, P = Plating

24 Core Tests Defined in JTP

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Appearance</td>
<td>✔️</td>
</tr>
<tr>
<td>2. Thickness</td>
<td>✔️</td>
</tr>
<tr>
<td>3. Porosity</td>
<td>✔️</td>
</tr>
<tr>
<td>4. Hardness</td>
<td>✔️</td>
</tr>
<tr>
<td>5. Grain Size</td>
<td>✔️</td>
</tr>
<tr>
<td>6. Ductility</td>
<td>✔️</td>
</tr>
<tr>
<td>7. Stress</td>
<td>✔️</td>
</tr>
<tr>
<td>8. Fatigue</td>
<td>T, P</td>
</tr>
<tr>
<td>9. Coating Integrity</td>
<td>T, P</td>
</tr>
<tr>
<td>10. Corrosion (B117)</td>
<td>✔️</td>
</tr>
<tr>
<td>11. Corrosion (SO2)</td>
<td>✔️</td>
</tr>
<tr>
<td>12. Corrosion (Beach)</td>
<td>T</td>
</tr>
<tr>
<td>13. Corrosion (OCP)</td>
<td>✔️</td>
</tr>
<tr>
<td>14. Adhesion</td>
<td>P</td>
</tr>
<tr>
<td>15. HE</td>
<td>P</td>
</tr>
<tr>
<td>16. HE (No Bake)</td>
<td>P</td>
</tr>
<tr>
<td>17. Fluid Compatibility</td>
<td>✔️</td>
</tr>
<tr>
<td>18. HRE</td>
<td>P</td>
</tr>
<tr>
<td>19. Wear - Taber</td>
<td>✔️</td>
</tr>
<tr>
<td>20. Wear - Pin on Disk</td>
<td>✔️</td>
</tr>
<tr>
<td>21. Wear - Endurance Rig</td>
<td>T</td>
</tr>
<tr>
<td>22. Wear - Falex</td>
<td>T</td>
</tr>
<tr>
<td>23. Wear - Gravelometry</td>
<td>T</td>
</tr>
<tr>
<td>24. Wear - SATEC</td>
<td>T</td>
</tr>
</tbody>
</table>

Approved – Feb 2011

Note:

- The images show the Joint Test Protocol (JTP) documents, indicating that the testing protocols are in progress. The packages have been approved for February 2011.
Technical Progress

(Fluid Compatibility)

Assess nCoP ability to withstand operational service conditions and overhaul fluids

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Purpose</th>
<th>nCoP</th>
<th>EHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-PRF-83282</td>
<td>Hydraulic</td>
<td>PASS</td>
<td>-</td>
</tr>
<tr>
<td>MIL-PRF-680</td>
<td>degreaser</td>
<td>PASS</td>
<td>-</td>
</tr>
<tr>
<td>Fluorescent penetrant</td>
<td>NDI</td>
<td>PASS</td>
<td>-</td>
</tr>
<tr>
<td>Nital</td>
<td>Grind burn</td>
<td>FAIL</td>
<td>*PASS</td>
</tr>
<tr>
<td>Ammonium persulfate</td>
<td>Grind burn etch</td>
<td>FAIL</td>
<td>*PASS</td>
</tr>
<tr>
<td>Cimstar 40</td>
<td>Grinding fluid</td>
<td>PASS</td>
<td>-</td>
</tr>
<tr>
<td>Turco 4181L Alkaline Cleaner</td>
<td>Cleaner</td>
<td>PASS</td>
<td>-</td>
</tr>
<tr>
<td>MIL PRF 85570 type 2</td>
<td>Cleaner</td>
<td>PASS</td>
<td>-</td>
</tr>
<tr>
<td>Bioact 280</td>
<td>Cleaner</td>
<td>PASS</td>
<td>-</td>
</tr>
<tr>
<td>Chlorine Bleach</td>
<td>Disinfectant</td>
<td>FAIL</td>
<td>*PASS</td>
</tr>
</tbody>
</table>

EHC samples showed some form of minor attack. However, it did pass according to JTP acceptance criteria.
Technical Progress
Sliding Wear

- Pin-on-Disc testing conducted as per ASTM G99
 ("Standard Test Method for Wear Testing on a Pin on Disc Apparatus")

<table>
<thead>
<tr>
<th>Coating</th>
<th>EHC coated</th>
<th>4130</th>
<th>13-8 stainless</th>
<th>7075 Al</th>
<th>70-30 Cu-Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>nCoP</td>
<td>✓ PASS</td>
<td>✓ PASS</td>
<td>✓ PASS</td>
<td>✓ PASS</td>
<td>✓ PASS</td>
</tr>
<tr>
<td>nCoP (HE bake)</td>
<td>✓ PASS</td>
<td>✓ PASS</td>
<td>✓ PASS</td>
<td>✓ PASS</td>
<td>✓ PASS</td>
</tr>
<tr>
<td>nCoP (Max hardness)</td>
<td>✓ PASS</td>
<td>✓ PASS</td>
<td>✓ PASS</td>
<td>✓ PASS</td>
<td>✓ PASS</td>
</tr>
</tbody>
</table>

* Does not include nCoP ball on EHC results
Technical Progress
(Abrasive Wear)

- Taber wear testing to assess abrasive wear resistance of coatings
- Performed ASTM D4060
- Performed ASTM F1978

Wear Index of nCoP and EHC Coatings (ASTM D4060)

Total Mass Loss over 2000 cycles of nCoP and EHC Coatings (ASTM F1978)

- CS-17 wheels
- 1000g load
- H-22 wheels
- 250g load
Technical Progress

FALEX Block on Ring
- Test per ASTM G77
- Determines the resistance of materials to sliding wear
- Different Alloy/Coatings against Ring

Gravelometry
- Test per ASTM D3170
- Specimens mounted perpendicular to projected path
- Pea size gravel; air pressure 70 psi

SATEC Oscillating Load
- Boeing Specific Test
- Pin/Bushing Oscillating Wear Test
- Constant/ Sinusoidal load-motion profile

Wear Samples plated and at Boeing for Testing
AISI 4130 steel coupons

Environment:
- 0.5M NaCl, 7 day OCP 1-hr interval
- Reference electrode: SCE
- nCoP shows tendency to reach more noble potentials than EHC

<table>
<thead>
<tr>
<th>Coating</th>
<th>Mean OCP (mV-SCE)</th>
<th>Final OCP (mV-SCE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nCoP</td>
<td>-470</td>
<td>-470</td>
</tr>
<tr>
<td>EHC</td>
<td>-600</td>
<td>-600</td>
</tr>
</tbody>
</table>
Technical Progress
(ASTM B-117 Corrosion Testing)

Salt Fog Testing (ASTM B-117)

- Test conducted as per ASTM B-117
- Rankings assigned as per ASTM B537
- Major improvement in performance between Ni+EHC and EHC
- No observable difference between Ni+nCoP and nCoP.

Nanovate™ CoP

Coating Oxidation

μ-EDXRF Spectra

Hard Chrome

Substrate Corrosion

μ-EDXRF Spectra

Nanovate™ CoP

Coating Oxidation

μ-EDXRF Spectra

Hard Chrome

Substrate Corrosion

μ-EDXRF Spectra

Nanovate™ CoP

Coating Oxidation

μ-EDXRF Spectra

Hard Chrome

Substrate Corrosion

μ-EDXRF Spectra

Nanovate™ CoP

Coating Oxidation

μ-EDXRF Spectra

Hard Chrome

Substrate Corrosion

μ-EDXRF Spectra
SO2, Salt Fog Testing (ASTM G85-A4)

- Test conducted as per ASTM G85-A4
- Rankings assigned as per ASTM B537
- Major improvement in performance between Ni+EHC and EHC
- No observable difference between Ni+nCoP and nCoP.
Technical Progress
(Corrosion – Beach Exposure)

- Beachside Atmospheric Test Facility, NASA Kennedy Space Center
- EHC exhibits red rust
- No red rust for all other coatings in test to date
OXIDE CHARACTERIZATION
(WHITE PAPER SUBMITTED)

Surface Characterization
- X-ray photoelectron spectroscopy (XPS) analysis to determine composition of the surface oxide.
- X-ray diffraction (XRD) analysis to determine presence of oxides or intermetallic compounds.
- Scanning electron microscope (SEM) to be conducted on mounted cross-section to determine the concentration profiles for Co, Fe and O.

Performance Testing
- Ball-on-flat with linear reciprocating motion (ASTM G133)
- Ambient conditions and simulated salt water solution (i.e., 3.56 wt% NaCl)
- Mass loss, contact surface profilometry, coefficient of friction and depth profiling (3D imaging)
Axial Fatigue Testing

- 4340 steel (260-280 ksi)
- Shot peened (S110 - 0.008-0.010)
- 16 Ra Minimum
- R ratio: $R = -1$
- Loads: 85% YS to 10^6 Cycles
Technical Progress

SPECIFICATION DEVELOPMENT

NAVAIR LPS (Draft Version)

MIL Spec (MFFP-2011-002)

AMS Spec (Being Pursued)
Ruben Prado, CEF
Principal Investigator
Naval Air Systems Command
904-790-6381
Ruben.prado@navy.mil

Jack Benfer, M.S.
Co-Principal Investigator
Naval Air Systems Command
904-790-6405
John.benfer@navy.mil

Neil Mahalanobis
Project Leader
Integran Technologies, Inc.
416-675-6266 x 375
mahalanobis@integran.com
Backup Material
Technology Transfer

(Extended Stakeholder POCs)

Boeing - Steve Gaydos

Heroux Devtek - Nihad Ben Salah

NASA - Jon Devereaux

UDRI - Natasha Voevodin

VLN - William Bloom

Hill AFB - Dave Frederick

Tinker AFB - Van Nguyen

Messier Dowty - Roger Eybel

Boeing Additional Tests

Adhesion
- Chisel
- Flat Peen

Fatigue
- Round Axial
- Flat Axial

Sliding Wear
- Pin-in-Bushing
- Track Roller
- Fretting Wear
Papers/Publications Since IPR 2010

Patents/Patent Applications
US 5,352,266 (1994): Nanocrystalline metals and process of producing the same
Coating Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Applicable Standard</th>
<th>Nanovate CR</th>
<th>EHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance and porosity</td>
<td>Visual and microscopic inspection</td>
<td>N/A</td>
<td>Free from pits, microcracks and pores</td>
<td>Microcracked</td>
</tr>
<tr>
<td>Grain Size</td>
<td>X-Ray Diffractometry</td>
<td>N/A</td>
<td>8-15 nm</td>
<td>-</td>
</tr>
<tr>
<td>Hardness</td>
<td>Vickers Microhardness</td>
<td>ASTM B578</td>
<td>550-600 VHN (as-deposited)</td>
<td>Min. 600 VHN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>600-750 VHN (heat treated)</td>
<td>-</td>
</tr>
<tr>
<td>Ductility</td>
<td>Bend Test</td>
<td>ASTM B489</td>
<td>2-7%</td>
<td><1%</td>
</tr>
<tr>
<td>Adhesive Wear</td>
<td>Pin on Disc (Al₂O₃ Ball)</td>
<td>ASTM G99</td>
<td>6-7 x 10⁻⁶ mm³/Nm</td>
<td>9-11 x 10⁻⁶ mm³/Nm</td>
</tr>
<tr>
<td>Coefficient of friction</td>
<td></td>
<td></td>
<td>0.4-0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Pin Wear</td>
<td></td>
<td></td>
<td>Mild</td>
<td>Severe</td>
</tr>
</tbody>
</table>
Coating Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Applicable Standard</th>
<th>Nanovate CR</th>
<th>EHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasive Wear</td>
<td>Taber Wear (CS-17 wheels)</td>
<td>ASTM D4060</td>
<td>17 mg/1000 cycles</td>
<td>4 mg/1000 cycles</td>
</tr>
<tr>
<td>Corrosion</td>
<td>Salt Spray</td>
<td>ASTM B117</td>
<td>0.003” thick Pass 165 hrs</td>
<td>0.003” thick Fail 165 hrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.002” thick Protection Rating 7</td>
<td>0.004” thick Protection Rating 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(ASTM B537) @ 1000 hours</td>
<td>(ASTM B537) @ 1000 hours</td>
</tr>
<tr>
<td>Deposit Stress</td>
<td>Internal Stress Test</td>
<td>N/A</td>
<td>10-15 ksi (Tensile)</td>
<td>Cracked – Exceeds cohesive strength</td>
</tr>
<tr>
<td>Fatigue</td>
<td>Rotating Beam Fatigue</td>
<td>N/A</td>
<td>Comparable to bare at high loads.</td>
<td>Significant debit compared to bare at all loads.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Small debit compared to bare at low loads.</td>
<td>Credit compared to EHC.</td>
</tr>
</tbody>
</table>
Technical Progress

T-45 Pivot Assembly

Plated Area

Plating Rack

Tie Down Ring

Dem/Val Components
Overview of Prior Work

 - Concept Feasibility

 - Industrial scale-up at Integran
 - Process Line NAVAIR JAX

- **Supplemental Risk Reduction DOE (2008)**
 - Optimized Plating Parameters

- **ESTCP/NESDI Project (2009 – 2011)**
 - ESTCP WP-0936 & NESDI #348
 - JTP/DEM Plan Development
 - Process Development
 - Baseline Dem/Val plated
 - Phase I JTP Tests Completed
 - Elsyca modeling for Dem/Val, fatigue rack optimization

660 gal nCoP Plating tank at Integran

250 gal nCoP tank at FRC-SE
Environmental/Cost Benefits

- **Estimated NAVAIR P2 Savings over 10 Yrs**
 (Hexavalent Chromium Plating at Navy FRCs)

 - HAZMAT: *128,930 lbs*
 - HAZ Waste: *348,470 lbs*
 - Cr Rinse: 1,800,000 gals
 - Eng Controls: $1,608,750
 - Regulatory Compliance: $1,100,850

 Impact of new OSHA Cr\(^{6+}\) regulations drives costs up

 Waste may continue to drop as a result of decreasing usage of chrome due to increasing regulations.

 Note: the above projected savings are assumptions based on FRC-SE data extrapolated to other Navy FRCs. Estimated amounts due to chrome plating based on average Environmental Systems Allocation (ESA) data extrapolated across all FRCs over a 10 yr period.