ELECTROCOAT PROCESS FOR NON-CHROMATE PRIMERS IN DOD MANUFACTURING
Project Number: WP-201010

ASETSDefense
San Diego, CA
August 29th, 2012
Electrocoat Process for Non-Chromate Primers in DOD Manufacturing

PPG Industries Inc., One PPG Place, Pittsburgh, PA, 15272

Approved for public release; distribution unlimited

Technical Approach

Task 1
- **Laboratory validation**
 - Test to MIL-PRF-23377 and MIL-PRF-32239.
 - *Goal: Electrocoat to meet MIL specifications and to equal performance of qualified spray primer.*

Task 2
- **Tank Installation at Military Depot**
 - Pilot tank to demonstrate electrocoat application
 - Application on aircraft parts

Task 3
- **Track performance relative to qualified controls**
 - Field performance on military aircraft
 - Determine life cycle benefits
Electrocoat Basics

An application method which uses direct electrical current to deposit the coating

- Waterborne coating
- Chromium-free (no heavy metals)
- Lower temperature cure: 30 minutes metal at 200°F
- Chemistry and cure requirements are uniquely suited for aerospace aluminum

![Diagram of electrocoat process]
Electrocoat Basics

The electrocoat system - Four stages:
- Electrocoat tank - primer application
- Two rinse tanks
- Oven (thermal cure)

From Pretreatment

Electrocoat

1st Rinse

DI or RO Rinse

30 min @ 200°F

metal temp

To Oven

Ready to fly
Electrocoat Benefits

Productivity & Efficiency
- Virtually 100% materials utilization
- Immediate part handling after thermal cure (30 minutes metal @ 200 °F)
 - *Do not have* “dry to touch”, “dry to tape”, “dry to fly” restrictions

Application & Performance
- Uniform film across entire surface including recessed areas and complex shapes
- Excellent barrier / corrosion resistance properties
Benefits of Electrocoat

Environmental, Health, and Safety Considerations

- Aqueous based
- Minimal waste discharge- closed loop process
- Minimal exposure of workers to coating components

VOC (EPA Method 24)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecoat</td>
<td>~260 g/ L</td>
</tr>
<tr>
<td>NC spray primer</td>
<td>340 g/ L</td>
</tr>
<tr>
<td>Cr spray primer #1</td>
<td>350 g/ L</td>
</tr>
<tr>
<td>Cr spray primer #2</td>
<td>340 g/ L</td>
</tr>
</tbody>
</table>
Task 1- Laboratory Validation

• 2024 and 7075 aluminum alloys

• Four surface treatments
 – Cr(IV) Alodine 1200s (NAVAIR and PPG applied)
 – Sulfuric Acid Anodize (Type II) with dichromate seal
 – TCP
 – Prekote

• Comparison of five primers
 – Ecoat #1 and Ecoat #2 with two levels of corrosion inhibitor
 – MIL-PRF-23377N Cr-free spray primer
 – MIL-PRF-23377C Solvent Cr spray primer
 – MIL-PRF-85582C Water Cr spray primer

• Primer-only and with MIL-PRF-85285 Type I Gloss white topcoat
Performance Tests

• Corrosion
 – B117 Neutral salt spray
 – Filiform
 – SO$_2$ salt fog
 – GM9540P
 – Beach Exposure (Kennedy Space Center)
 – Galvanic assemblies
 • Neutral salt spray
 • SO$_2$ salt fog
 • Beach Exposure
Performance Tests

• Fluid Resistance
 – MIL-PRF-23699 lubricating oil
 – MIL-PRF-83282 hydraulic fluid
 – JP-8 + 100 jet fuel
 – Skydrol LD-4
 – Water
 – JP-5 jet fuel

• Adhesion
 – Wet
 – Dry

• Flexibility
 – Mandrel bend
 – GE impact
<table>
<thead>
<tr>
<th>Test</th>
<th>Comments</th>
<th>Meets specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt spray</td>
<td>Better than/ equal to NC spray primer</td>
<td>✓</td>
</tr>
<tr>
<td>Filiform</td>
<td>Better than/ equal to Cr spray primer</td>
<td>✓</td>
</tr>
<tr>
<td>9540P</td>
<td>Better than/ equal to Cr spray primer</td>
<td>NR</td>
</tr>
<tr>
<td>SO₂</td>
<td>Equal to controls</td>
<td>NR</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Equal to controls</td>
<td>✓</td>
</tr>
<tr>
<td>Wet/ Dry Adhesion</td>
<td>Better than/ equal to controls</td>
<td>✓</td>
</tr>
<tr>
<td>Impact</td>
<td>Equal to controls</td>
<td>✓</td>
</tr>
<tr>
<td>Fluids Resistance</td>
<td>Equal to controls</td>
<td>✓</td>
</tr>
<tr>
<td>Water Resistance</td>
<td>Equal to controls</td>
<td>✓</td>
</tr>
<tr>
<td>Exposure Galvanic</td>
<td>Equal to controls</td>
<td>NR</td>
</tr>
<tr>
<td>Salt spray Galvanic</td>
<td>Mixed results</td>
<td>NR</td>
</tr>
<tr>
<td>SO₂ Galvanic</td>
<td>Mixed results</td>
<td>NR</td>
</tr>
</tbody>
</table>
• AA2024-T3 & AA7075-T6
• Alodine 1200s, TCP, Prekote
• Testing:
 – ASTM B117 (500 hrs/3 weeks)
 – ASTM G85.A4 (336 hrs/2 weeks)
 – Beach exposure (still in testing- 9 months)
Results summary - Galvanic assemblies

- Corrosion testing - 3 weeks SO$_2$ (ASTM G85. Annex 4)

Ecoat

(As-is) (After stripping)

NC Spray Primer
Corrosion mechanism different between Electrocoat and spray primers

- Electrocoat has larger area of blistering; all surface corrosion
- Spray primers have more localized, but deeper corrosion

Scribe near fastener hole

Residual coating

End of scribe
Task 2- Tank installation at Military Depot

• Potential parts
Task 2- Tank installation at Military Depot (Option 1)

- Technology demonstration using 100 gallon, self-contained electrocoat system
Task 2- Tank installation at Military Depot (Option 2)

- Utilization/ modification of existing equipment

- ~ 200 gallon tanks

- ~ 2000 gallon tanks
Project Team

Bill Hoogsteden: PI (April 2012 -)
CTIO, Wright-Patterson AFB

Julia Russell: PI (Aug 2010- September 2012)
NAVAIR Materials Engineering, NAS PAX

Thor Lingenfelter: Co-PI
PPG Industries Inc.

San Tran: Co-performer
Engineer, Tinker ALC

2Lt Kevin Cheng: Co-performer
USAF CPCO/WRAFB

CWO Randall Langley: Co-performer
USCG Airworthiness Sustainment Branch –Corrosion Program Manager

Additional Support

Luc Doan, Southwest FRC
Bill Nickerson, ONR
Mark Foley, USAF CPCO/WRAFB
SMSgt Scott Pagenkopf USAF

SMSgt Scott Ward, USAF (ret)
Robin Peffer, PPG
Duane Utter, PPG