ROBUST SEMI-ACTIVE RIDE CONTROL UNDER STOCHASTIC EXCITATION

Jeremy Kolansky - Virginia Tech
Amandeep Singh, Jill Goryca - US Army TARDEC
Robust Semi-Active Ride Control Under Stochastic Excitation

Virginia Polytechnic Institute and State University, 222 Burruss Hall, Blacksburg, VA, 24061

U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, MI, 48397-5000

Approved for public release; distribution unlimited

Briefing charts for SAE 2014

Security Classification: Unclassified

Limitation of Abstract: Public Release

Number of Pages: 16
Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.
Outline

• Introduction/Overview
• Vehicle Modeling
• Road Profile and Stochastic Excitation
• Performance Metrics
• Control Methodology
• Simulation Results
 • Robust for parameter range
 • Robust for unknown input
 • Comparison
• Conclusions
Ride comfort for military vehicles are important for several reasons:
1) Fatigue caused by vehicle vibrations
2) Motion sickness reduction by smoothed vehicle motions
3) Ability to modify handing conditions based upon terrain

Suspension Type:
1) Fully Active Suspension
2) Passive Suspension
3) Semi-Active Suspension

Control Method:
1) LQR/H-Infinity/Linear Methods
2) Nonlinear/Adaptive
3) Discontinuous (Parameterized or otherwise)
Seven Degree of Freedom Vehicle Model

Suspension Forces

\[F_{fl} = k_{fl}(z - a \theta + l\phi - z_{fl}) + c_{fl}(\dot{z} - a\dot{\theta} + l\dot{\phi} - \dot{z}_{fl}) \]
\[F_{fr} = k_{fr}(z - a \theta - r\phi - z_{fr}) + c_{fr}(\dot{z} - a\dot{\theta} - r\dot{\phi} - \dot{z}_{fr}) \]
\[F_{rl} = k_{rl}(z + b \theta + l\phi - z_{rl}) + c_{rl}(\dot{z} + b\dot{\theta} + l\dot{\phi} - \dot{z}_{rl}) \]
\[F_{rr} = k_{rr}(z + b \theta - r\phi - z_{rr}) + c_{rr}(\dot{z} + b\dot{\theta} - r\dot{\phi} - \dot{z}_{rr}) \]

Wheel Dynamics

\[\ddot{z}_{fl} = \frac{-k_{u,fl}*(z_{fl} - z_{g,fl})H(z_{g,fl} - z_{rl}) + F_{fl}}{m_{rl}} - g \]
\[\ddot{z}_{fr} = \frac{-k_{u,fr}*(z_{fr} - z_{g,fr})H(z_{g,fr} - z_{fr}) + F_{fr}}{m_{fr}} - g \]
\[\ddot{z}_{rl} = \frac{-k_{u,rl}*(z_{rl} - z_{g,rl})H(z_{g,rl} - z_{rl}) + F_{rl}}{m_{rl}} - g \]
\[\ddot{z}_{rr} = \frac{-k_{u,rr}*(z_{rr} - z_{g,rr})H(z_{g,rr} - z_{rr}) + F_{rr}}{m_{rr}} - g \]

Vehicle Body Dynamics

\[\ddot{z} = \frac{-(F_{fl} + F_{fr} + F_{rl} + F_{rr})}{mass} - g \]
\[\dot{\theta} = \frac{a(F_{fl} + F_{fr}) - b(F_{rl} + F_{rr})}{J_{pitch}} \]
\[\dot{\phi} = \frac{-l(F_{fl} + F_{rl}) + r(F_{fr} + F_{rr})}{J_{roll}} \]
Third Order Auto Regressive Time-Series Model

\[u_i = \phi_1 u_{i-1} + \phi_2 u_{i-2} + \phi_3 u_{i-3} + \varepsilon_i \] \hspace{1cm} (12)

Feedback Coefficients

\[\phi_1 = 1.2456, \]
\[\phi_2 = -0.2976, \]
\[\phi_3 = -0.1954, \]
\[\varepsilon_i = \text{Gaussian White Noise, Unity Variance} \]

A series of statistical tests were conducted to examine the validity of the time-series model representation of the road profile
Third Order Auto Regressive Model

\[u_i = \phi_1 u_{i-1} + \phi_2 u_{i-2} + \phi_3 u_{i-3} + \varepsilon_i \] \hspace{1cm} (12)

Front-Left-Wheel: \[z_{w_{fl}}(t) = z_r(t) = u_i \]
Front-Right-Wheel: \[z_{w_{fr}}(t) = z_r(t + \delta) = u_{i+\delta} \]
Rear-Left-Wheel: \[z_{w_{rl}}(t) = z_r\left(t + \frac{L}{v_s}\right) = u_{i+\frac{L}{v_s}} \]
Rear-Right-Wheel: \[z_{w_{rr}}(t) = z_r(t + \frac{L}{v_s} + \delta) = u_{i+\frac{L}{v_s}+\delta} \]

Wheelbase: \(L \) \hspace{1cm} Vehicle Speed: \(v_s \) \hspace{1cm} Delay: \(\delta \)
Performance Metrics

- **Absorbed Power (At the seat locations)**
 - Next Slide

- **RMS Acceleration (At the seat locations)**
 - $\sqrt{\ddot{z}/N}$

- **Road Holding (At each wheel)**
 - $z_{\text{wheel}} - z_{\text{road}}$

- **Rattle Space (For each suspension strut)**
 - $z_{\text{body}} - z_{\text{wheel}}$
• **Absorbed Power**
 • Measure of ride comfort
 • Amount of energy absorbed from ride vibration

\[
\overline{AP} = \lim_{T \to \infty} \frac{1}{T} \int_0^T F(t)V(t) dt
\]

• Actual absorbed power with physical characteristics
• Typical coefficients of a 50th percentile man are used
• For the 7-DOF model, the absorbed power is computed at all the four seats (two in front and two in rear), and averaged to represent a single ride comfort metric used for the study.
Control Methodology – Accelerometer Driven Damper (ADD)

Infinite Control Authority ADD

\[C_{desired} = C_{min} + H(\ddot{z}_{def})(C_{max} - C_{min}) \] \hspace{1cm} (13)

Moving Average Filter

\[Z_k = \sum_{i=0}^{N} \frac{1}{N+1} z_{k-i} \] \hspace{1cm} (14)
Simulation Results – Parameter Effects

Response Surface for Varying Sliding Window Length and Damping

- Mean Absorbed Power
- Damping (Ns/M)
- Sliding Window Length (points)
Simulation Results – Parameter Effects

Absorbed Power Response for Varying Moving Average Length and Mass

Mean Absorbed Power

Mass (kg)

Filter Length (points)
Simulation Results – Stochastic Road Effects

Response Surface for Varying Sliding Window Length and Road Roughness, 15 MPH

- Mean Absorbed Power
- Sliding Window Length (points)
- Road Variance (inch)
Simulation Results – Stochastic Road Effects

Response Surface for Varying Sliding Window Length and Road Roughness, 30 MPH

Mean Absorbed Power

Sliding Window Length (points)

Road Variance (inch)
Quarter Car Results

<table>
<thead>
<tr>
<th>Control Type</th>
<th>Average Absorbed Power (W)</th>
<th>Sprung Mass Acceleration RMS (g's)</th>
<th>Road Holding Max (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive</td>
<td>26.65</td>
<td>0.61</td>
<td>4.45</td>
</tr>
<tr>
<td>SH 2-state</td>
<td>6.19</td>
<td>0.39</td>
<td>4.87</td>
</tr>
<tr>
<td>SH-ADD</td>
<td>3.43</td>
<td>0.25</td>
<td>4.87</td>
</tr>
<tr>
<td>SH Linear</td>
<td>3.05</td>
<td>0.23</td>
<td>5.54</td>
</tr>
<tr>
<td>ADD</td>
<td>1.28</td>
<td>0.19</td>
<td>5.11</td>
</tr>
<tr>
<td>Smoothed ADD (Proposed)</td>
<td>1.09</td>
<td>0.17</td>
<td>5.18</td>
</tr>
</tbody>
</table>
Conclusions

• Smoothing function significantly improves over the original ADD control for the higher fidelity models than just quarter car models.

• Invariant with respect to vehicle mass/inertia (Does not require any vehicle parameters)

• Invariant with respect to road profile

• Computationally efficient algorithm. Challenge comes from sensor implementation