Implementing New Non-Chromate Coatings Systems
February 9, 2011

Craig Matzdorf
Materials Engineering Division
NAVAIR
Implementing New Non-Chromate Coatings Systems

Naval Air Warfare Center, Materials Engineering Division, 22347 Cedar Point Road, Patuxent River, MD, 20670

Approved for public release; distribution unlimited

ASETSDefense 2011: Sustainable Surface Engineering for Aerospace and Defense Workshop, February 7-10, 2011, New Orleans, LA. Sponsored by SERDP/ESTCP.

Unclassified
NAVAIR Non-Chromate Coatings Goal

Identify, test, validate and implement non-chromate primers and surface preparations which are as broad in capabilities and performance as current chromated primers and surface preparations.

- Performance across multiple alloys/substrates, with and without topcoats per MIL-PRF-85285 and TT-P-2760; in combination with specialty coatings
- Across all exposure conditions for all the materials currently protected by Class C materials.
- Galvanic Corrosion Protection – faying surfaces, dissimilar materials interfaces, wet installation of fasteners and bushings, SCC, exfoliation, etc.
- Surface Prep/Primer Compatibility –
 - Type I and Type II conversion coatings per MIL-DTL-81706/MIL-DTL-5541
 - Type I, IC, II, or IIB anodized aluminum per MIL-A-8625
 - Sacrificial coatings (such as IVD-Al, Cd, Zn-Ni, etc.)
 - Fe alloys, other conversion coated or anodized light metals such as Ti and Mg and composite substrates
 - Adhesion, filiform, humidity, and fluid resistance properties
NAE Position on Cr6+ and Path Forward

• Cr6+ is used in 10 major metal finishing and corrosion protection processes, with many sub-processes
 – Cost impact is highest for compliance when removing Cr6+ containing coatings, especially sanding at FRCs
 – Application of most materials can be achieved while complying with regulations

• Alternatives can be implemented during design and production by OEMs and subcontractors and at Navy and contractor facilities which carry out O, I and D-level maintenance.

• Many uses include critical engineering applications including adhesive bonding, wear surfaces and corrosion protection on high-strength steels, and protection of critical structure

• Compliance with memos and expected DFARs contract language will increase cost of acquisition environmental and corrosion support

• Implementation of alternatives is not trivial and requires a risk reduction approach, especially for primers

• RDT&E needs to be prioritized and linked to Cr6+ goals
Cr6+ Waiver Process

- **NAVAIR** has established a waiver process
- **Process in place to meet requirements of Cr6+ DFARs, once released**
- **Actions likely to originate with EPAT leads**

Diagram:
- Determine cost effectiveness and evaluate technical feasibility of alternatives.
- Conduct ESOH risk evaluation (note: alternatives must have MRL \(\geq 8\)).
- Establish material availability of Cr6+ versus alternatives over lifecycle.
- Determine corrosion performance differences of alternatives in coordination with Navy’s Corrosion Prevention and Control Executive.

Yes:
- Approval of alternatives by W/S PM and Corrosion SME designee.
- Change technical/maintenance manual or publications to direct alternative use.

No:
- Do viable alternatives exist?
- Are alternatives proven, available, and meet MRL \(\geq 8\)?
- Ensure all contracts incorporate DFAR 223.73 language.
- Cr6+ identified on weapon system (W/S), subsystems, and components via OEM.
- Seek alternatives via contract with OEM. Government verify contract efforts.

Initiate Cr6+ authorization process for continued Cr6+ use using the form, Authorization to Use Hexavalent Chromium.

Coordinate with Navy Corrosion Prevention and Control Executive prior to submitting to PEO.

PEO approves authorization request to use Cr6+.

Update PESHE (at Milestones B,C, and FRP) with system specific Cr6+ risks and efforts to include cost/schedule risks, life cycle cost comparisons among alternatives (e.g., material handling and disposal, system overhaul cycle times/costs due to differences in corrosion protection).

Address corrosion evaluations, alternatives, and tradeoffs in the Corrosion Prevention and Control Plan required for ACAT I programs at Milestones B and C.
Implementation Points

• Design- Implemented at OEMs/Suppliers
 – New design: finish specifications
 – Easiest to implement, lowest cost, difficult to validate alternatives

• Production- Implemented at OEM/Suppliers
 – Engineering Change Proposal (ECP): drawings
 – Medium difficulty to implement, variable cost, validation on fielded assets possible

• Fielded- Implemented at Gov’t and Contractor Facilities
 – ECP and Local Process Specification modifications; Contract changes; 01-1A-509 and other General Series manual changes
 – Medium difficult to implement for immersion processes, easier for spray and touch up; validation on fielded assets typical
Implementation Progress

- Use of Chromates in Inorganic Coatings and Processes
 - Alternatives authorized for
 - Aluminum and magnesium anodizing
 - Hard Chrome Plating
 - Type II conversion coating on aluminum alloys under chromated primer
 - Type II conversion coating on Alumiplate under chromated primer
 - **Sealing of Type IC, IIB, II and III anodize using Type II conversion coatings (TCP)**
 - Alternatives pending authorization
 - Conversion coating magnesium and titanium
 - **Sealing of phosphate coatings**
 - Alternatives being assessed in demonstration and validation projects
 - Type II conversion coating on aluminum alloys with Class N primers
 - Post treatment of IVD aluminum
 - Post treatment of IZ-C17+ ZnNi
 - Type II conversion coatings on aluminum: Class 3 applications
Implementation Progress

- **Use of Chromates in Organic Coatings and Processes**
 - Alternatives authorized for
 - Priming of support equipment (MIL-DTL-53022)
 - Sealing- various specifications
 - Priming aircraft/components: scuff sand and overcoat applications
 - Alternatives pending authorization
 - None currently
 - Alternatives being assessed in demonstration and validation projects
 - Primer “direct to metal/conversion coating” in coating systems with chromated or non-chromated conversion coatings
 - Galvanic primers in total NC systems
 - Alternatives requiring additional research and development
 - Adhesive bond primers
 - Combination of NC primers with other NC finishing options in most applications
NAVAIR Primer Issues

• “Silver” Standard – MIL-DTL-5541 Type II/MIL-PRF-23377 Class N
 – Most applications covered – 95+% solution (Type I and Type II)
 – Next Gen Primers needed for Type I and II to meet/exceed chromated coating system performance: just about all Class N work is on Type I products
 – Robustness is Key – Most robust surface preparations + most robust organic coatings = Most robust coating systems
 – Misconception regarding resins – both primer specs are 340 g/L

• Resin Properties often overlooked –
 – Inhibitor is not the only functional component, adhesion and barrier properties controlled by resin system
 – Impacts pigment loading and inhibitor release function
 – 23377 High.solids “solvent-borne”: superior resin system for total protection
 – 85582 “water-borne”: better application characteristics
 – Effect more pronounced in Class N primers, but diminishing as Class N primers are improving
 • Rely more on surface preparation performance
NAVAIR Non-Cr6+ Efforts

• Ongoing
 – AERMIP- Dem/Val Class N primer/ZVOC topcoat; GSE focused on aluminum
 – ESTCP WP-201010- eCoat primer; alinged with new ESTCP NC Primer project
 – ESTCP WP-201011- self sealing fasteners (non-chromate sealers/primers)
 – ESTCP WP-200906- NC ZVOC coatings (ARL lead); GSE focused on steel
 – SERDP WP-1673- accerated dynamic corrosion test method (SWRI lead)
 – SERDP WP-1620- scientific understanding of NC inhibitors (Ohio State lead)
 – ESTCP- CoP electroplating
 – DLA- Type II conversion coating touch up pens
 – NAVAIR/NISE- NC primer development and characterization

• New
 – NESDI NC Primer Dem/Val– Supports implementation of qualified Type I and Type II Class N primers at NAVAIR user sites. Includes Type I and II conversion coatings.
 – OSD– Type II, Class 3 Conversion Coatings; electronics requirements
 – NESDI IZ- C17+ zinc-nickel, with non-chromate passivations
 – NAVAIR/NISE- Type II conversion coating dem/val of Surtec 650V
Advanced Anodizing using Process Control Technology
(slides courtesy of FRC-SE/R. Prado)

- NESDI N-0086-02: Low HAP Coatings, Solvents and Strippers.
 - Integration of Metalast Process Control technology for producing Type II, IIB & III coatings within one tank system for Depot-Level maintenance
 - Metalast Process Control Technology to include Interface Controller, Process Controller & Bath Additive
 - Evaluate TCP as a non Cr+6 post anodize sealer for all coating types.
 - ROI: 30.7 or Payback Period of 2.1 Yrs

- Capabilities gained:
 - Reduces Operator error and Supervision of Process
 - Improved quality, accuracy and repeatability
 - Reduces defects and rejects
 - Accountability of Work Performed

- Efficiencies achieved:
 - Reduces cycle & throughput times
 - At least 15% more efficient than conventional anodizing

- Environmental benefits achieved:
 - Extends life of bath chemistry/ Reduced Waste
 - Energy savings due to use of aluminum cathodes
 - Allows for consolidation of anodizing processes
 - Elimination of Hexavalent Chromium

- FRC-SE (JAX)
 Fully Integrated

- FRC-E (CP)
 Fully Integrated

- FRC-SW (NI)
 Integration in Process
Advanced Anodizing using Process Control Technology

(slides courtesy of FRC-SE/R. Prado)

TCP shows better performance than Dichromate Sealing

2,033 Hrs NSF

Average Coating Weight: 450 mg/ft² (~2.6 µm)
Current Density used: 8 ASF for 13 min

Type II TCP sealed coupons went well beyond 3,000 hrs before significant pitting corrosion was visible

7,272 Hrs NSF

Average Coating Weight: 2,880 mg/ft² (~12.7 µm)
Current Density used: 12 ASF for 40 min

Dichromate Seal (5% wt)
Panels A2-BS1C (1–5)
15 minute seal @ 203°F

Dichromate Seal (5% wt)
Panels A2-BS1T (1–5)
10 minute seal @ 80°F

TCP-HF (1:1)
Panels A2-B2C (1–5)
15 minute seal @ 203°F

TCP-HF (1:1)
Panels A2-B2T (1–5)
10 minute seal @ 80°F
Conclusions & Path Forward

• Alternatives available for most applications- authorization and transition underway in many areas

• Implementation of qualified NC primers on low risk applications/aircraft underway

• Field testing of qualified NC primers/coating systems on higher risk applications and aircraft underway with more to come

• An Engineering Circular was recently completed which documents NAVAIR Materials Engineering Division policy for NC Coating Systems and contain information on:
 – State-of-the-art products & processes
 – Transition drivers
 – Testing requirements
 – Demonstration and validation requirements
 – Transition approach
 – Risk analysis
 – Implementation recommendations

(see talk on Thursday for more details on the NC engineering circular)