Cold Spray for Repair of Magnesium Gearboxes

Brian Gabriel, Victor Champagne, Matt Trexler, Dennis Helfritch
ARL Center for Cold Spray
8 February 2011
Cold Spray for Repair of Magnesium Gearboxes

Authors
U. S. Army Research Laboratory, Center for Cold Spray, Aberdeen Proving Ground, MD, 21005

Abstract
ASETSDefense 2011: Sustainable Surface Engineering for Aerospace and Defense Workshop, February 7 - 10, 2011, New Orleans, LA. Sponsored by SERDP/ESTCP.
Technical Objectives

Demonstrate and qualify cold spray aluminum alloy coatings which provide surface protection and a repair/rebuild methodology for Mg alloy components on Army and Navy helicopters and advanced fixed-wing aircraft such as the Joint Strike Fighter

1. Cost-effective
2. ESOH-acceptable technology
Unique solid-state deposition process which utilizes high velocity particles impinging upon a substrate to build up material.

Technical Approach

Cold Spray Process

- Feed stock typically ranges from 1 to 50 µm
- Particle ductility is crucial
- Gas temperature range from R.T. to 800°C
- No melting of particles
- Negligible oxidation
- No decomposition or phase changes of deposited particles or substrate
COLD SPRAY EQUIPMENT at FRC EAST

Approved for Public Release; Distribution Unlimited
Technical Approach

Joint Test Protocol

Mechanical Tests
- Adhesion Tensile Bond Test (ASTM C633)
- XRD Residual Stress
- R.R. Moore RB Fatigue
 - surface finished 125 \(R_A \)
- Fretting Fatigue – UTRC
- Impact - ASTM D5420
- Hardness
- Porosity
- Triple Lug Shear

Corrosion Tests
- Un-scribed ASTM B117
- Scribed ASTM B117
- GM9540 Scribed
- Galvanic Corrosion (G71)
- Crevice Corrosion (G78)
- Beach Corrosion
- G85 Annex 4-SO\(_2\)

Stack Up: RockHard, 23377, and 85285

Approved for Public Release; Distribution Unlimited

UTRC Fretting Fatigue Specimen
The oxygen content of the cold spray coating is largely determined by the oxygen content of the original powder, not the process.
The oxygen content of the cold spray coating is largely determined by the oxygen content of the original powder, not the process.
Modeled deposition efficiencies appear to be close to experimental values while the calculated velocities are well above the critical velocities for Al (~500 m/s)
Microstructures of 6061 Cold Spray Optical Microscopy

Increasing Gas Pressure

Approved for Public Release; Distribution Unlimited
Technical Progress

ZE41A-T5 Substrate Temperature Recorded at 163.4°C (326.1°F)

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Condition</th>
<th>Aging Temp (°F)</th>
<th>Time (Hrs)</th>
<th>Solutionizing Temp (°F)</th>
<th>Aging after Solutionizing Temp (°F)</th>
<th>Time (Hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ91C</td>
<td>-T5</td>
<td>335</td>
<td>16</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>AZ91C</td>
<td>-T6</td>
<td>---</td>
<td>---</td>
<td>775</td>
<td>335</td>
<td>16</td>
</tr>
<tr>
<td>AZ92A</td>
<td>-T5</td>
<td>500</td>
<td>---</td>
<td>---</td>
<td>420</td>
<td>5-6</td>
</tr>
<tr>
<td>AZ92A</td>
<td>-T6</td>
<td>---</td>
<td>---</td>
<td>765</td>
<td>425</td>
<td>5</td>
</tr>
<tr>
<td>ZE41A</td>
<td>-T5</td>
<td>625</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

T5 means artificially aged
T6 means solution heat treated and artificially aged

Approved for Public Release; Distribution Unlimited
Technical Progress

Wrought versus Cold Spray 6061

Key

T4, T451- Solution heat-treated and naturally aged to a substantially stable condition. Temper -T451 applies to products stress-relieved by stretching.²

T6, T651- Solution heat-treated and then artificially aged, Temper -T651 applies to products stress-relieved by stretching.²

In Process Anneal- 640°F for 10 to 12 Hours

<table>
<thead>
<tr>
<th>6061 Condition</th>
<th>Source</th>
<th>UTS, ksi</th>
<th>YS, ksi</th>
<th>%EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>annealed</td>
<td>¹</td>
<td>18</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>T4, T451</td>
<td>²</td>
<td>30</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>T6, T651</td>
<td>²</td>
<td>42</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td>cold sprayed (CS)</td>
<td>³</td>
<td>49.3</td>
<td>42.5</td>
<td>3</td>
</tr>
<tr>
<td>CS- In process anneal</td>
<td>³</td>
<td>29.0</td>
<td>24.0</td>
<td>17</td>
</tr>
</tbody>
</table>

¹Matweb
²Alcoa.com
³Microtensile Test by Aaron Nardi at UTRC of ARL Cold Spray Block
Vickers Hardness of CP Al (Valimet H-12) Sprayed with 20 bar He versus Gun Temperature

- Model
- Cold Sprayed
- Work Hardened
Triple Lug Shear Test
Test Description: Thick coating is deposited and machined into three lugs (3/16” x 1”) and then tested in compression.

7 out of 12 6061 on ZE41A-T5 samples failed within the Mg.
Technical Progress

Bond Bar Adhesion (ASTM C633)

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Coating System</th>
<th>Average Thickness (in)</th>
<th>Average Max Tensile Stress (PSI)</th>
<th>Stddev. Tensile Stress (PSI)</th>
<th>95% Confidence Tensile Stress (PSI)</th>
<th>Observed Failure Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZE41A-T5</td>
<td>6061 He</td>
<td>0.0134</td>
<td>11052</td>
<td>808</td>
<td>560</td>
<td>100% Glue</td>
</tr>
<tr>
<td></td>
<td>CP-Al He</td>
<td>0.0197</td>
<td>12069</td>
<td>597</td>
<td>370</td>
<td>100% Coating Adhesion</td>
</tr>
<tr>
<td></td>
<td>CP-Al N₂</td>
<td>0.0228</td>
<td>10400</td>
<td>846</td>
<td>677</td>
<td>100% Coating Adhesion</td>
</tr>
</tbody>
</table>

Observed for Public Release; Distribution Unlimited
Fretting Fatigue Setup at UTRC

Fretting rig pressure = 848 psi
Projected area fretting stress = 5 ksi (34 Mpa)
Fretting pin load = 167 lb
Fretting slip amplitude = ±0.001 inches (±25 microns)
Range of max axial test loads = 443 – 2955 lbs
Range of max axial test stress = 3 – 20 ksi
Range of lives = 32,000 – 10 million (runout)
Phasing = in phase with fret slip increasing at max axial
Pin Type = 0.206 diameter 4340 steel with cadmium plating

ARL Fretting Fatigue Test Matrix

<table>
<thead>
<tr>
<th>Specimen Base Material</th>
<th>Counterface Pin Material</th>
<th>Coating</th>
<th># of Specimens Tested</th>
<th>Specimens Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ91C-T6</td>
<td>4130, 30-35 HRC, Cadmium plated</td>
<td>None</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6061 using Helium</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-Al using Nitrogen</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>ZE41A-T5</td>
<td></td>
<td>None</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6061 using Helium</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP-Al using Nitrogen</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

Slide Courtesy of Aaron Nardi, United Technologies Research Center

Approved for Public Release; Distribution Unlimited
Cold Spray Repair Fretting Fatigue

Slide Courtesy of Aaron Nardi, United Technologies Research Center
AZ91C-T6 and ZE41A-T5 with no coating applied exhibited a 10 million cycle life of approximately 6.2 ksi.

Both Magnesium alloys with cold sprayed 6061 applied by helium exhibited a 10 million cycle life of approximately 5.3 ksi.

ZE41A-T5 with cold sprayed CP Aluminum applied using helium exhibited a 10 million cycle life of approximately 4.9 ksi.

AZ91C-T6 magnesium with cold sprayed CP aluminum using nitrogen exhibited a 10 million cycle life of approximately 3.3 ksi.

Fretting failures on baseline materials matched the expected fracture pattern:
- The cracking from top edge of fretting scar
- Coating cracks propagated without changing direction at the interface suggesting a good bond and higher modulus.

Slide Courtesy of Aaron Nardi, United Technologies Research Center
ESTCP RR Moore Data: 6061 and CP-Al N$_2$ on AZ91C-T6

- AZ91C-T6 Baseline
- CP Al N2 HCAT Approach: Substrate Diameter Only
- CP-Al N2 Two Modulus Approach
- 6061 HCAT Approach: Substrate Diameter Only
- 6061 Two Modulus Approach

Approved for Public Release; Distribution Unlimited
ESTCP RR Moore Data: 6061 and CP-Al N₂ Sprayed with N₂ on EV31-T6

- EV31-T6 Baseline
- CP-Al N₂ HCAT Approach: Substrate Diameter Only
- CP-Al N₂ Two Modulus Approach
- 6061 HCAT Method: Substrate Diameter Only
- 6061 Two Modulus Approach

Maximum Stress, S (ksi)
Fatigue Life, N (cycles)
XRD Residual Stress Versus Depth for 6061 Cold Spray on ZE41A-T5

Compressive Residual Stress (ksi)

- X-Direction
- Y-Direction
Un-scribed ASTM B117
- CP-Al went well (7000 hours at Army and 1000 hours at PSU)
- 6061 went 7000 hours at Army and will be retested at PSU due to thin spots

Scribed ASTM B117
- 1000 hours through top coat but 24 hours through to substrate. On par with HVOF Al-12Si

GM9540 Scribed- Sprayed

Galvanic Corrosion (G71)

Crevice Corrosion (G78)- No Crevice mechanism

Beach Corrosion- Undergoing testing

*vs uncoated ZE41
-Cd plated steel specimens are currently being fabricated for comparison
Sump Qualification

Substrates: ZE41A & AZ91C Magnesium
Coating Material: CP-Aluminum and/or 6061 Al

Total Replacement Cost Savings estimated to be $935,000.00/ year

Approved for Public Release; Distribution Unlimited
Cold Spray Coating Parameters Optimized at ARL

All Specimens from the JTP have been sprayed by ARL

Testing is nearing completion for all Mechanical and Corrosion Specimens - All Partners (UTRC, Westmoreland, PSU, FRCEast, NAVAIR, ARL)

- Unscribed B117- 7000 hours
- Fretting Fatigue- Acceptable for He coatings
- RR Moore- CP-Al N2 for non-structural, 6061 potential for structural repair

Cold spray system at FRCEast is operational and ready for limited production