Magnesium

Is it a viable option?

Presented by:
EMI Quality Plating
Magnesium Is it a viable option?

1. REPORT DATE
AUG 2012

2. REPORT TYPE

3. DATES COVERED
00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

EMI Quality Plating, 5701 Old Boonville Hwy, Evansville, IN, 47715

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

Same as Report (SAR)

18. NUMBER OF PAGES

18

19a. NAME OF RESPONSIBLE PERSON

Notes:
- Approved for public release; distribution unlimited.
- Sponsored by SERDP/ESTCP.
AGENDA:

- Introduce audience to current products being made in magnesium.
- Explain process for effective plating onto magnesium.
- Testing completed on E/N plated Mag.
- New technology for conductive, highly protective magnesium coating.
- Test results of “unobtainium”
`1935 Bugatti
Weapons platforms and sound suppression manufacturer
The Gen 4 Receiver
Magnesium is 35% lighter.

Gen 4 receiver is coated with High Phos E/N and Ceramtek B
Military communication devices.
Magnesium in consumer products.
Keys to successful plating:

1. The condition of the casting, molding or extruded materials are key to successful plating.
 • Flash, parting lines, segregation of materials, packaging

2. Process steps:
 • Soak Clean
 • Micro-etch
 • Acid
 • Activator (removes aluminum, Cu, zinc from surface)
 • Zinc immersion - High alkalinity
 • Copper strike - High alkalinity
 • Magnesium strike – High alkalinity
 • Electroless Nickel - formulated to prevent attach of magnesium.
Success Stories:

1. Thermal Cycle per ASTM B733 on AZ91D
2. Salt Fog 248 hours per Mil-Std-810F, Method 509.4.
3. Cass Testing 48 hours per ASTM B368
4. Field Testing on assembled unit: 1 year in Afghanistan
5. Drop Testing from various distances
6. Grind Saw testing per ASTM B571-97
7. Cyclic corrosion testing per SAE J2334
8. Step testing (thickness and electrode potential of individual layer in a multi layer deposit)
9. Achieved cosmetic and shielding requirements by customer
Cyclic testing described

<table>
<thead>
<tr>
<th>Cyclic Conditions in Basic Cyclic Cabinets</th>
<th>Cyclic Conditions in Advanced Cyclic Cabinets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Salt or chemical (electrolyte) fog, saturated RH</td>
<td>All in preceding column, plus:</td>
</tr>
<tr>
<td>2. Water fog, saturated RH</td>
<td>9. Controllable humidity, ambient to saturated RH</td>
</tr>
<tr>
<td>3. Dry-off</td>
<td>10. Immersion</td>
</tr>
<tr>
<td>4. Dwell, a period of rest where no action is taken</td>
<td>11. Second Electrolyte, for fog or direct spray</td>
</tr>
<tr>
<td>5. Non-condensing humidity (i.e., “moist heat”)</td>
<td>12. Very low temperature and RH, automatic</td>
</tr>
<tr>
<td>6. Direct spray (impingement), salt or other chemical</td>
<td>13. Ambient temperature and RH, automatic</td>
</tr>
<tr>
<td>7. High temperature, up to 70°C/160°F</td>
<td>14. Very high temperature, up to 90°C/195°F</td>
</tr>
<tr>
<td>8. Gas injection, including Nox, SO2, CO2, etc.</td>
<td></td>
</tr>
</tbody>
</table>
New Challenges for magnesium coatings:

Our customer presented us with a detailed specification for the coating we would put onto an AZ91D molding.

- They need 500 hour salt fog minimum.
- They need the deposit to be conductive.
- The surface needs to meet an RA of less than 5μ"
The response:

After much consideration, we determined that we needed the Corrosion protection that an anodizing process would provide And be able to plate the anodized finish.

EMI has developed technologies that allow us to plate Various ceramics including titanium nitride, Barium nitride, and AlsiC.

We are also heavily involved in production launches/projects for plating of Composites such as POM, Acetal, Polyester, Polypropylene, Nylon, Peek and Ultem with 40% class.

Utilizing the database and information collected during development of said materials, we began sampling the anodized magnesium
AZ91D Magnesium plaques were supplied by customer, several of which had already been coated with Keronite. EMI also sent parts out to be coated with Cerafuse.

The plating process was then developed utilizing a soak cleaner, mild Alkaline etch, ionic palladium, palladium reducer, electroless copper and electroless nickel.

The initial results were encouraging: We were able to get the parts to plate with good adhesion and our plating was conductive.
The parts are currently in salt fog testing. They have been in test for 746 hours and only white/green corrosion has been seen at the surface of the nickel. We are leaving the parts in test until there is evidence that magnesium is corroding.

There is no evidence of corrosion to the magnesium and no galvanic corrosion has set up yet.

Parts were tested to the customer specification for shielding and passed. The specification is:

EMI Shielding requires 20 – 5 ohms/sq or 20dB (for frequencies 250 MHz – 10 GHz.)
Where we go from here:

Provide samples of actual part (with all complex Geometries)

Test using same parameters.

Validate process repeatability and production readiness.

- We are encouraged by the results on salt fog.
- EMI will continue to work on all anodized/ceramic coatings for Magnesium, to ensure process works and can be ramped To production environment.