IMPROVING THE GALVANIC SERIES FOR DESIGN

Dennis L. Dull

February 7-10, 2011

ASSETSDefense 2011:
Sustainable Surface Engineering for Aerospace and Defense

New Orleans, LA
Improving the Galvanic Series for Design

Boeing, P. O. Box 516, St. Louis, MO, 63166

Approved for public release; distribution unlimited

1. REPORT DATE	FEB 2011
2. REPORT TYPE	
3. DATES COVERED	00-00-2011 to 00-00-2011
4. TITLE AND SUBTITLE	Improving the Galvanic Series for Design
5a. CONTRACT NUMBER	
5b. GRANT NUMBER	
5c. PROGRAM ELEMENT NUMBER	
5d. PROJECT NUMBER	
5e. TASK NUMBER	
5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	Boeing, P. O. Box 516, St. Louis, MO, 63166
8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)	
10. SPONSOR/MONITOR’S ACRONYM(S)	
11. SPONSOR/MONITOR’S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT	Approved for public release; distribution unlimited
13. SUPPLEMENTARY NOTES	
14. ABSTRACT	
15. SUBJECT TERMS	
16. SECURITY CLASSIFICATION OF:	
a. REPORT	unclassified
b. ABSTRACT	unclassified
c. THIS PAGE	unclassified
17. LIMITATION OF ABSTRACT	Same as Report (SAR)
18. NUMBER OF PAGES	16
19a. NAME OF RESPONSIBLE PERSON	
One of Many Galvanic Series Available

Metals in flowing seawater

What's the corrosion rate?

Where's Zn-Ni?

Why is this different from the EMF series?

Noble

This isn't my environment

Where's my HVOF?

Which is the cathode?

Isn't this upside down?

Active

Copyright © 2010 Boeing. All rights reserved.
What’s Our Concern?

Designer Concerns
- Metal compatibility with environment
- Galvanic coupling of dissimilar metals
- Adding an inorganic coating
- Adding an organic coating
- Minimizing service failures

Production and Maintenance Concerns
- Scheduling Inspections
- Replacing Designs that don’t work
- Material and Design Trades
 - Reduce costs
 - Reduce maintenance
- Allowing Substitutions
Technical Needs

• What we do already—
 • Use “Galvanic Series”
 • Qualitatively rely on “tribal knowledge” & handbooks
 • Conduct Laboratory Tests

• What we want to do—
 • Use Engineering Tools to Propose Engineering Solutions
 – Design tools require quantitative data
 • Quantify severity of corrosion on all geometries
 – Coupled finish on substrate of detail part
 – Coupling of detailed parts of different materials
 • Reduce/Eliminate Laboratory Tests
Approach Methods

- **Galvanic Series Chart for Designers**
 - Establish Steady State Corrosion Potential
 - Measure Corrosion Rate
 - Generate anodic and cathodic polarization curves

- **Predict Galvanic Coupling Effects on Geometries**
 - For 1-D (imensional) Quick-Look
 - Superimpose polarization curves
 - For 2-D & 3-D mapping
 - Work with industrial partners for computer application solutions
 - Utilize polarization curves
 - Solve potential and current distribution equations for geometry
Initial Data Acquisition – Steel Example

Visual Documentation

Corrosion Potential Time Plots

EIS Data Generation
Polarization Curves of Steel in Salt Water

Anodic Polarization → STEEL → Steel Dissolution
Cathodic Polarization → Oxygen Reduction → Water Reduction to Hydrogen

Current Density
Data Analysis and Results

Corrosion Rate Time Plots

Polarization Resistance/Area

Steel, run 1
Steel, run 2

Capacitance

Steel, run 1
Steel, run 2

Corrosion Rate

Steel, run 1
Steel, run 2
Boeing’s Work to Date

- Generated steady-state Corrosion Potentials
- Generated steady-state Corrosion Rates
- Generated some Polarization Curves

- Initiated Next Generation Galvanic Series with 1-D Quick-Look
Next Generation Galvanic Series of Steel and Finishes with 1-D Quick-Look

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

Graph showing corrosion rates and potentials for various materials:
- Steel
- Zn-Ni, chromated
- Cd
- Cd, chromated
- Cd-Ti
- Cd-Ti, chromated
- Zn
- Zn, chromated

Graphs depict corrosion potential and current density for different materials.

Copyright © 2010 Boeing. All rights reserved.
So Far

• Established an initial protocol
 • Materials and finishes placed on NG Galvanic Series
 • Some polarization curves utilized for 1-D Quick-Look

• Need an industry wide protocol to address materials, finishes, and geometries
 • Complete NG Galvanic Series with 1-D Quick-Look
 • Implement polarization curves into 2-D and 3-D design
 • Verify experimentally corrosion severity mapping
 • Funding to extend DoD relevant coating systems

• Into the future
 • Investigate crevice corrosion environments
 • Include organic coatings
BACKUP
Road Forward – Phase I Methodology

- Establish industry working group
 - Identify objectives
 - Down select test variables and procedures
 - Environments of interest
 - Extent of variations of metals, alloys, and finishes
 - Electrochemical tests
 - Specimen geometries
 - Test Procedure criteria
 - Data Analysis
- Conduct Electrochemical Testing on Bare Alloys
- Conduct Galvanic Corrosion Analysis
 - Generate NG Galvanic Series with 1-D Quick-Look
 - Validate 1-D Quick-Look galvanic corrosion predictions
 - Initiate 2-D and 3-D galvanic corrosion prediction mapping
• Establish a NG Galvanic Series with 1-D Quick-Look capabilities for Design
 • Complete electrochemical testing for remaining alloy families and finishes

• Develop and execute a test plan to validate predictions for 2-D and 3-D geometries
Next Generation Galvanic Series

Engineering, Operations & Technology | Boeing Research & Technology

Chemical Technology

Stainless Steels

Aluminum Alloys

Steel

Cadmium

Zn, Zn-Ni

Corrosion Potential vs. Corrosion Rate

-1400 -1200 -1000 -800 -600 -400 -200 0 200

0.001 0.01 0.1 1 10 100

15-5 PH
15-5 PH passivated
PH 13-8 Mo
301
347
2024-T4
Clad on 2024
2098-T8
5083-F
6061-T6
7055-T762
7075-T6
Alumiplate
Alumiplate, chromated
Cd
cd, chromated
Cd-Ti
Cd-Ti, chromated
Cr, ground & sealed
IVD Al, as deposited
IVD Al, chromated
Ni, electroless, immersion
Sn-Zn
Sn-Zn, chromated
Steel
Steel-St Louis
Ti, immersion
WCCo, sealed
WCCo, unsealed
WCCoCr, unsealed
WCCoCr, sealed
Zn
Zn, chromated
Zn-Ni
Zn-Ni, chromated