U.S. Army
Aviation & Missile Command
Hexavalent Chromium Coatings Replacement Program
February 2008

Kerry Blankenship
AMCOM LCMC G-4 Engineering
Services Coordinator

Paul Robinson
ManTech-SRS
U.S. Army Aviation & Missile Command Hexavalent Chromium Coatings Replacement Program

Army Aviation and Missile Life Cycle Management Command, Redstone Arsenal, AL, 35898

Approved for public release; distribution unlimited

Surface Finishing and Repair Issues for Sustaining New Military Aircraft Workshop, February 26-28, 2008, Tempe, AZ. Sponsored by SERDP/ESTCP.
AMCOM Testing effort focused on the performance of the coating system

- Technical approach was more holistic
 - Focus was on coating system performance vice individual system component capabilities

Test Program leveraged off of other DoD and commercial test efforts

- NAVAIR – ESTCP Non-Chrome Aluminum Pretreatments
- Air Force - PreKote
- Air Force/NAVAIR Non-Chrome Epoxy Primer
- Deft/Hentzen Class N Primer development
Test Program Background

- Testing performed Fall/Winter/Spring 2003-2004 at NAVAIR Patuxent River and ARL Aberdeen
 - NAVAIR performed pretreatment and coating application
 - ARL performed corrosion, EIS and adhesion testing on the coated samples
 - ASTM Adhesion testing performed on both wet and dry samples
 - Corrosion testing evaluated samples in neutral salt fog (B117) and Cyclic (GM9540)
• Substrate Materials evaluated included:
 – 2024 and 7075 Aluminum (T6 tempers) various test pretreatments
 – 4340 High Strength Steel (Cd plated)
 – ZE41A Magnesium (Dow 17 and PreKote Treated)
 – G11 Composite (no pretreatment)
• Coating Products Evaluated
 – Class N Primer (MIL-PRF-85582 Type I)
 – MIL-DTL-53039 and 64159 CARCs
 – Alternate conversion coatings: Alodine 5700, Alodine T5900RTU and PreKote
Test results indicated the following materials were the best non-hexavalent chromium products

- MIL-DTL-81706 Type II (TCP)
 - 4 Manufacturers have qualified products
 - Products available as concentrates or ready-to-use
 - NSNs requested and Army transition will follow
- MIL-PRF-23377 Class N
 - 2 Manufacturers have qualified products
 - NSNs obtained and Army transition in-progress
ON-AIRCRAFT TESTING

• Initial Test coating applied to CH-47 by 1109th Aviation Classification Repair Activity Depot (AVCRAD) Groton Fall 2005
 – Pretreatment MIL-DTL-81706 Type II (TCP)
 – Upper fuselage received a Class C primer, lower fuselage the Class N primer
 – MIL-DTL-64159 Type II CARC

• Additional coating applications continued at the 1109th AVCRAD throughout 2006 and 2007
 – New coating system used on CH-47, UH-60 and AH-64 rotary-wing aircraft
Several Class N Primers are now available for use

MIL-PRF-23377 Type I and II Class N NSNs

- **Type I** – 8010-01-555-3381 (1 Gal Kit)
 - Mfr P/N 16708TEP/16709CEH Hentzen
 - Mfr P/N 02GN084 (Deft)
- **Type I** – 8010-01-555-3386 (1 Quart Kit)
 - Same P/N
- **Type II** – 8010-01-555-3383 (1 Gal Kit)
 - Mfr P/N – 17176KEP/16709CEH (Hentzen)
MIL-PRF-85582 Type I and II Class N NSNs

- Type I – 8010-01-555-3385 (1 Gal Kit)
 - Mfr P/N - 44GN098 (Deft)
- Type I – 8010-01-555-3388 (1 Quart Kit)
 - Mfr P/N - 44GN098 (Deft)
- Existing NSNs for MIL-PRF-85582 Type I and II Class N
 - 8010-01-466-9037 (Type I 2-Gal/Kit)
 - 8010-01-466-9313 (Type II 2-Gal/Kit)
• AMCOM Authorization for the use of Class N Primers in-progress
 – Maintenance Information Message (MIM) will be distributed when NSNs have been added to the Authorized Users List (AUL) for Aviation Systems and Equipment (in-progress)
 • Per discussion with the Integrated Material Management Center (IMMC), the MIM is still at Aviation Safety awaiting final approval before distribution
 – Follow-on MIMs will be issued for MIL-DTL-81706 Type II products when NSNs have been assigned
• Request has been submitted to the GSA for NSN Assignment for MIL-DTL-81706 Type II Class 1a and 3 products (Trivalent Chromium Process – TCP)
 – Type II products do not use hexavalent chromium (Cr+6)
 – Primer adhesion in many applications is improved over Type I conversion coatings
 – Corrosion inhibition performance not impacted by elevated temperatures
 • No breakdown when used under powder coatings cured at temperatures that would damage Type I conversion coatings
• May be other potential applications for the TCP materials
 – Testing is in-process to evaluate TCP as a seal coating over:
 • Acid and alkaline zinc-nickel plate
 • Zinc plate
 • Phosphate treatments over steel
 • Final rinse/seal over hard anodized aluminum

MIL-DTL-81706
• New CARC coatings conforming to MIL-DTL-53039 Type II will be available in the near future
 - Type II products contain <1.5 lb/gal VOCs and 0 Volatile Hazardous Air Pollutants
 - CARCs use either silica or polymeric bead flattening
 - New NSNs to be assigned to differentiate from older MIL-C- or MIL-DTL-53039 coatings
New ‘53039 Type II Beaded CARC will initially be available in the most common Aviation colors:

- Aircraft Green (Color No. 34031),
- Aircraft Black (Color No. 37038),
- Aircraft Interior Black (Color No. 37031) and
- Aircraft Interior Grey (Color No. 36231)
- Still awaiting final qualification of the new Desert Sage color (Color No. 34201) for the CH-47
- Insignia Blue (35044), Aircraft Red (31136), Aircraft White (37875) will be available as a Type I coating for the immediate future (silica flatteners)
• When changing to the new primer and CARC coatings initial results were mixed
 – AVCRAD personnel closely followed mix/application guidelines with OEM techreps present
 • No noted difficulties and good results
 – Other facility painters did not review technical guidelines and proceeded to apply the new primer like the previous products
 • Inadequate mixing resulted in some of the coating failures
 • Wet/dry film thickness was not properly controlled
 • Improper paint gun settings and tip orifice sizes resulted in poor control of the applied coating
 • Top-coating was applied before primer had sufficient time to fully cure
G-4/Coating OEM performed an on-site assessment of the painting operations at a primary AMCOM facility.

Personnel provided recommendations to improve painting operations, maximize productivity, minimize waste:

Infrastructure review focused on several contributing areas:

- Storage areas need to be less exposed to wide temperature swings
- Mixing Equipment
 - Single or Dual Arm aggressive paint “shakers” are needed to properly mix the new high solids primer and CARC coatings
 - Proper process needs to be followed to mix the two-component coatings
• Infrastructure review (continued):
 – Application Equipment
 • High Volume/Low Pressure (HVLP) guns
 – All of the paint guns in each paint shop should be standardized (standardized in entire facility would be best)
 » Proper repair parts must be available in each shop
 – Proper tip orifice critical with the new coatings
 • Paint pots that use vertical or paddle agitators to keep suspended solids evenly distributed are required
 – Proper operation of in-pot agitators is important
 – Paint pots must be kept on optimum condition
• **Infrastructure Review** (continued)

 – **Supply air**

 • Supply air systems must provide sufficient pressure and volume

 • Inline air dryers to ensure air supplied to pressure pot/gun is moisture- and oil-free

 • Easily accessible and operable traps and blow downs to keep air lines contaminant free

 • Regular inspections and maintenance on the systems to maintain top performance

 • Airlines should be properly sized and configured for optimum performance

 – Separate supply lines for pot pressurization and atomization air
• Infrastructure Review (continued)

 – Paint Booth Climate Controls
 • Need to keep the booth at a nominal 50% relative humidity
 • Control temperatures in the booth at:
 – 70°F or above (winter months),
 – 90°F or below (summer months)
 • Aircraft should be acclimated to the booth temperature prior to coating application
• New Primers and CARCs are not the same coatings as previously used
 – Transition to the new coatings will require painter familiarization with the coating prior to spraying an aircraft
 • Hands-on training and test panel spraying recommended prior to 1st application on an aircraft
 • Training should emphasize:
 – Understanding ambient condition impacts on coating application and drying
 » Temperature and humidity
 – Proper mixing
 – Sufficient drying time between coating applications
 – Controlling wet-film thickness and edge blending
• POCs
 – Mr. Kerry Blankenship, AMCOM G-4 Government Team Lead Engineering Services Group
 • Commercial - 256-876-8898 DSN 746-8898
 • kerry.blankenship@conus.army.mil
 – Mr. J.P. Robinson, ManTech SRS Technologies
 • Commercial – 256-876-6161 DSN 746-6161
 • james.p.robinson2@conus.army.mil