
Presented by: Brad Martin
U.S. Air Force Reduction of Hexavalent Chromium on Landing Gear Components via Implementation of HVOF Tungsten Carbide Coatings

1. **REPORT DATE**
 SEP 2009

2. **REPORT TYPE**
 3. **DATES COVERED**
 00-00-2009 to 00-00-2009

4. **TITLE AND SUBTITLE**

6. **AUTHOR(S)**

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 Air Force Materiel Command, Wright-Patterson AFB, OH, 45433

8. **PERFORMING ORGANIZATION REPORT NUMBER**

9. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**

10. **SPONSOR/MONITOR'S ACRONYM(S)**

11. **SPONSOR/MONITOR'S REPORT NUMBER(S)**

12. **DISTRIBUTION/AVAILABILITY STATEMENT**
 Approved for public release; distribution unlimited

13. **SUPPLEMENTARY NOTES**

14. **ABSTRACT**

15. **SUBJECT TERMS**

16. **SECURITY CLASSIFICATION OF:**
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. **LIMITATION OF ABSTRACT**
 Same as Report (SAR)

18. **NUMBER OF PAGES**
 20

19. **NAME OF RESPONSIBLE PERSON**

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z99-18
Overview

- HVOF Implementation process
- HVOF Implementation progress
- Other engineering services
HVOF Implementation Process

- All line-of-site Chrome plated high strength steel components are targeted
- **3-Step Component Approval:**
 - 3D Modeling
 - Stress Analysis
 - System Safety Evaluation (SSE)
- **6-Step Part Conversion:**
 - HVOF Fixture Design
 - HVOF Fixture Fabrication
 - HVOF Spray prototype
 - Grind Prototype
 - Process Order Digital Display System (PODDS)
 - Technical Documentation:
 - Technical Order Update
 - Engineering Change Orders (ECO)
HVOF Implementation Process

- **Step 1 of 3 - 3D Modeling:**
 - Used for component stress analysis (later used for fixture design)
 - Generated from original prints
 - Pro-E or Solidworks

- **Step 2 of 3 - Stress Analysis:**
 - Each component must go through a stress analysis at coating location
 - Performed using limit loads to ensure function under normal stress conditions
 - Not all components identified are suitable for HVOF conversion
 - High stress thin walled (spallation)
HVOF Implementation Process

- **Step 3 of 3 - System Safety Evaluation (SSE):**
 - An SSE must be performed on each component
 - Formal review of safety related changes to original part configuration
 - Separated into two separate cases:
 - General case SSE:
 - Limit stress are below material yield or 226 KSI and at least one of the following:
 - HVOF and EHC finished thickness are equal
 - HVOF is replacing an existing flame spray repair
 - HVOF is specified by the OEM
 - Special case SSE:
 - All others not defined by the General case
HVOF Implementation Process

• **Step 1 of 6 - HVOF Fixture Design:**
 • Uses previously generated 3D model
 • Fixtures are designed with consideration of booth(s) to be used including:
 • Movement restrictions and limitations.
 • Cost effective manufacturing methods
 • Ease of overspray stripping
 • Ease of operator use

• **Step 2 of 6 - HVOF Fixture Fabrication:**
 • Fixture validation:
 • Dimensional inspection
 • Fit check on actual component
 • Fixture delivery:
 • Custom container including all hardware, fixture blueprints, tolerance stack and run out sheets
 • Recommended spare parts lists
 • Instruction manual
HVOF Implementation Process

- **Step 3 of 6 - HVOF Spray Prototype:**
 - Prototyping ensures:
 - Application program incorporates all optimized coating methods
 - Ensures part cooling cycles are correct
 - Verifies actual part processing times
 - Verifies tolerances

- **Step 4 of 6 - HVOF Grind Prototype:**
 - Prototyped component is diamond ground
 - Ensures final dimensional and surface finish attributes are achievable within optimized grinding parameters
 - Grinding accomplished per Air Force drawing 200310642
HVOF Implementation Process

- **Step 5 of 6 - Process Order Digital Display System (PODDS):**
 - Process Orders are the detailed, step-by-step instructions for operators to use to ensure process repeatability
 - The digital instruction database is available on line for all operators

- **Step 6 of 6 – Technical Documentation:**
 - Technical Orders updated
 - Engineering Change Orders:
 - Ensures new procurement using HVOF WC/Co in lieu of EHC
 - Converting components ensures future use of EHC will be reduced, thus lowering hexavalent chrome volume and related exposure issues
HVOF Implementation Progress

- A-10
- T-38
- F-15
- F-16
- C-5
- KC-135
- E-3
- C-130
- B-1
- B-52

PARTS CONVERTED
PARTS IN PROCESS
PARTS IDENTIFIED
Other Engineering Services

- Duplex Coating

- **Finishing Methods:**
 - Diamond Grinding
 - Superfinishing
 - Diamond Belt Finishing

- **Stripping Methods:**
 - Rochelle Salt
 - Pulsed Water Jet

- **WC/Co Alternatives**

- **WC/Co & WC/Co/Cr Qualification**
Duplex Coating

- The optimized HVOF WC/Co coatings are currently limited to 0.003”-0.015”
- Coatings thicker than 0.015” are periodically needed
- Duplex coating enables application up to 0.030” while maintaining all mechanical properties
- Phase I complete and working on Phase II

Table 5: Experiment Design Candidates Summary

<table>
<thead>
<tr>
<th>Experiment Design Candidates</th>
<th>Replicated/Mixed Factor</th>
<th>Randomized</th>
<th>Randomized/Six Non-Linear</th>
<th>Six Factor Central Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Runs</td>
<td>129</td>
<td>138</td>
<td>72</td>
<td>124</td>
</tr>
<tr>
<td>Included replications</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Highest order interactions able to detect quantity</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Duplicates system curvature (non-linear)</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Quantity model curvature?</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Quantity inherent system variation replicability?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Generates mathematical system model?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Predict multi-output optimal response?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>DDC mitigates influence of unknown extraneous factors?</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Study length control of extraneous factors employed?</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Total change-over time (minutes)</td>
<td>1,920</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
</tbody>
</table>

* No replicates on corner and axial points. Multiple replicates, however, placed on center point.
Phase I:
- Identified initial group of coating chemistries
- Tested per Air Force drawing 200310641
- Down-selected to 4 chemistries
- Generated a coating model tool using a Design of Experiment (DOE) method
 - DOE input parameters:
 - Oxygen Flow Rate
 - Fuel Flow Rate
 - Powder Flow Rate
 - Stand-off Distance
- Coating model tool predicts coating bond strength, ductility, porosity and hardness given changes in the input variables
 - Significantly reduces Phase II testing
Duplex Coating (Phase II)

- Phase II:
 - 4-point bend integrity testing:
 - 0.020” and 0.030” total coating thickness with 0.003” inch WC-Co cap
 - 0.017” and 0.027” total coating thickness without WC-Co cap
 - 5 cycles at 190ksi, 210ksi and 230ksi stress levels or until failure (spallation)
 - Corrosion testing of duplex system to chrome and WC-Co
 - Per ASTM B117
 - Coating integrity (large bar) testing of 2 best chemistries
Phased Coating (Phase II)

- Phase II Coating Integrity Testing Results:
 - The optimized build coat performed worse than expected
 - Adding WC-Co cap to build coat failed coupons at lower than predicted stress levels
 - Important observations:
 - The bond strength of WC-Co to build coat was very high
 - The bond strength of build coat to substrate was low
 - Possibly WC-Co bond coat followed by build coat could improve overall bond
 - Integrity testing with WC-Co bond coat:
 - Much better results (at 230 ksi):
 - No spallation at 0.027 without WC-Co top coat
 - No spallation at 0.030 from 3 of 4 chemistries with WC-Co top coat
Duplex Coating (Phase II)

WC/Co Bond-0.027 Build-0.003 WC/Co Top @ 230 ksi
Finishing Methods

• **Diamond Grinding of 300M:**
 - Air Force drawing 200310642:
 - Cylindrical, Face (contoured) and Surface grinding techniques were optimized to reduce/eliminate grinding burns

• **Superfinishing:**
 - Seal surfaces containing HVOF applied WC/Co coatings must be Superfinished after diamond grinding has been completed
 - Superfinishing methods were optimized and written into AF Drawing 200310642

• **Diamond Belt Finishing:**
 - The initial results of testing indicate an increase of processing efficiency by 3-5 times over standard diamond wheel grinding
 - HAFB long bed grinder has been retrofitted with belt attachment
 - Optimization testing will begin this year, specification to follow.
Stripping Methods

- **Rochelle Salt Stripping:**
 - Industry standard for removing HVOF applied WC/Co materials
 - Electrolytic method under controlled temperature and pH to break down the binder (Co) in the HVOF applied coating
 - Parameters identified within Air Force HVOF application specification-200310641

- **Forced Pulse Water Jet:**
 - Optimized for HVOF WC/Co and WC/Co/Cr stripping
 - Environmentally friendly
 - Fast, very efficient
WC-Co Alternatives

• **WC/Co Alternatives:**

 • Currently, HVOF WC/Co & WC/Co/Cr is the only approved Landing Gear coating

 • These coating are expensive and have fatigue and spallation concerns

 • It is desirable to qualify alternative coatings which provide:
 • As good as or better than chrome performance characteristics
 • More cost effective
 • Conventionally finished

 • Landing Gear Thermal Spray Specification
 • Requirements which will enable the Air Force to qualify other thermal spray chemistries
 • Modeled after the Landing Gear HCAT JTP
WC/Co & WC/Co/Cr Qualification

- WC/Co & WC/Co/Cr Qualification:
 - Enables the USAF to qualify vendors for HVOF WC application on OEM components
 - Qualification based on coatings passing standard metallurgical and performance baselines
 - Specification completed and signed off on 28 July 2009 (200925098)
 - Located at www.fbo.gov
Conclusion

- **Benefits:**
 - Improved wear performance
 - Removing a known embrittling process
 - Component longevity
 - Reduction in hexavalent chrome waste stream
 - Greatly reduced rework
 - Faster processing of parts

- **Issues:**
 - Solid infrastructure for EHC
 - Momentum change