Technology Transition: The Dynamic Role of the US Army Research Laboratory Coatings and Corrosion Offices.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

ASETSDefense 2012
August 28th, 2012
Fred Lafferman & John A. Escarsega
fred.lafferman@mail.mil john.a.escarsega@mail.mil
Title: Technology Transition: The Dynamic Role of the US Army Research Laboratory Coatings and Corrosion Offices.

Author(s):

Performing Organization:
U. S. Army Research Laboratory, Aberdeen Proving Ground, MD, 21005

DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

ABSTRACT

Outline

• Technology Transition
• Key Drivers to Support New Technology
• Major Gaps in Pretreatments
• Coatings and Corrosion Updates
• Transition of New Pretreatment Technology
Critical Coating Performance Requirements

Affordable
Multifunctional
Military
Coatings

VOC/HAP Reduction
Cr(VI) and heavy metal elimination

UV Resistance
Flexibility
Corrosion resistance

Chemical agent protection
Camouflage

Environmental
Survivability
Durability
Affordability
• Transitioning New and Enhanced Technology

  Reduction of Hazardous Air Pollutants

  Elimination of Heavy Toxic Metals

  Reduction of Volatile Organic Compounds

  Enhanced Performance-Corrosion and Weathering
Technology Transition into DOD Specifications

• Specifications
 ❖ Powder Coating-MIL-PRF-32348
 ❖ E-Coat-MIL-DTL-53084
 ❖ Enhanced Corrosion-MIL-DTL-53022/MIL-DTL-53030
 ❖ HAP-free Solvent-Memorandum and NSN’s, future MIL-T-81772 type
 ❖ Crystalline Silica Elimination-CARC Topcoats
• Pretreatment for Ferrous Substrates-TT-C-490 CHEMICAL CONVERSION COATINGS AND PRETREATMENTS FOR FERROUS SURFACES (BASE FOR ORGANIC COATINGS)
 ❖ Type I-Zinc Phosphate
 ❖ Type III-Wash Primer conforming to DoD-P-15328
 ➢ Contains hexavalent chromium-7% Zinc Chromate
 ➢ Contains HAPS
 ➢ Contains high levels of VOC-6.7 lbs/gal
 ➢ Only pretreatment for spray application not requiring contained and regulated spray booth
 ➢ Only pretreatment for multi-metal application
Major Gaps in Pretreatments (con’t)

- Defense Federal Acquisition Regulation Supplement; Minimizing Use of Hexavalent Chromium (DFARS Case 2009-D004).
- Proposed-52.211-4017 (TACOM) PREPARATION, APPLICATION, AND QUALITY ASSURANCE OF CARC PAINT SYSTEMS
- TACOM- Products containing hexavalent chromium shall not be used
- No available replacement for wash primer for spray application in existing spray booths.
- Direct to metal is not recommended or approved.
- *Planned action to resolve this gap in technology is revision to TT-C-490.*
• Evaluation and demonstration of Zr pretreatments as alternatives to both Zinc phosphate and chromate conversion coatings-SERDP and ESTCP

• Evaluation of Mg-Rich and Mg-Oxide primers for application to Army aircraft-ESTCP/NAVAIR&AMCOM

• ARL pursuing non-isocyanate topcoat technologies-SERDP
• Cadmium elimination on fasteners-ESTCP

• Evaluation and demonstration of spray in place hexavalent chromium free pretreatments to replace wash primer for multi-metal application-TMR and OSD

• Development of rapid cure CARC Coatings-OSD

• Non-chromate ZVOC pretreatments-ESTCP/Kelley*
• Major Questions to be Asked:

 ➢ What is the transition method to implement new pretreatment technologies.

 ➢ Transition to Chemical Agent Resistant Coating System.

• **Planned action to resolve this gap in technology is revision to TT-C-490.**
Transition of TT-C-490 New Pretreatment Technology

- Revision to TT-C-490-CHEMICAL CONVERSION COATINGS AND PRETREATMENTS FOR METALLIC SUBSTRATES (BASE FOR ORGANIC COATINGS)
 - Multi-metal application
 - Immersion and spray technologies
 - Organic and inorganic pretreatments
 - Silanes
 - Nano-Technology
 - Zirconium Technology
 - Qualification of new technologies, cancellation of DoD-P-15328
 - Legacy systems, as zinc phosphate, will not be affected
 - Legacy systems- Does Not Require Qualification
 - Referenced in MIL-DTL-53072, CARC application specification
QUESTIONS?