Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
SEP 1988

2. REPORT TYPE

3. DATES COVERED
00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
Discovery of Aedes (Howardina) Bahamensis in the United States

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Walter Reed Army Institute of Research, Walter Reed Biosystematics Unit, Department of Entomology, Washington, DC, 20307-5100

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
2

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
DISCOVERY OF *Aedes (Howardina) bahamensis* IN THE UNITED STATES

B. A. PAFUME,¹ E. G. CAMPOS,¹ D. B. FRANCY,¹ E. L. PEYTON,² A. N. DAVIS³ AND M. NELMS¹

In 1986, the Centers for Disease Control, Division of Vector-Borne Viral Diseases (DVBVD), Fort Collins, Colorado, initiated a surveillance program for the detection of *Aedes albopictus* (Skuse) with 40 collaborating cities in the southern and southeastern United States. Fifteen ovitraps, similar to those described by Fay and Eliason (1966), were deployed in each city, and egg paddles within the traps were changed weekly. These ovitraps were 1-pint black plastic jars with red velour strips clipped inside as ovipostion paddles, however, no ethyl acetate was used. Paddles were mailed to the DVBVD, where the eggs were hatched, and the resulting larvae were reared to 3rd or 4th instar. *Aedes aegypti* (Linn.), *Ae. albopictus* and *Ae. triseriatus* (Say) were identified regularly from reared larvae. In October 1986, a different species, *Aedes (Howardina) bahamensis* Berlin, was found in ovitraps from Dade and Broward counties in south Florida. Identification of *Ae. bahamensis* was confirmed by specialists at the Walter Reed Biosystematics Unit, Smithsonian Institution, Washington, DC., where specimens were deposited. This confirmation represents the first time this species and the subgenus *Howardina* of *Aedes* has been recorded in the United States.

Originally discovered in the Bahamas by Spielman and Weyer (1965) as *Ae. albonotatus* (Coquillett) and subsequently described as *Ae. bahamensis* by Berlin (1969), this mosquito has become established in at least 2 counties of southern Florida. Identification of *Ae. bahamensis* was confirmed by specialists at the Walter Reed Biosystematics Unit, Smithsonian Institution, Washington, DC., where specimens were deposited. This confirmation represents the first time this species and the subgenus *Howardina* of *Aedes* has been recorded in the United States.

The public health significance of *Ae. bahamensis* has not been investigated. Under insectary conditions at the DVBVD, *Ae. bahamensis* was found to be autogenous, although, like many other autogenous mosquito species, it will feed on blood when given the opportunity. After colonization, the proportion of females feeding on blood has increased with each generation, suggesting a selection for females with a blood feeding preference. Since *Ae. bahamensis* will feed on blood, this species can potentially serve as an arbovirus vector. Whether this species can vector other arboviruses depends on its intrinsic viral susceptibility, the willingness of nulliparous females to readily feed on blood, and host preferences.

The mode of introduction of this species to Florida is open to speculation. Larvae may have been introduced in water-holding containers, such as old tires used as bumper guards on boats, or through used tire importations, aircraft or hurricane winds. Nevertheless, this species seems to be here to stay. Southern Florida has reported increasing populations signalling the need for more research into the significance of *Ae. bahamensis* in the United States.

REFERENCES CITED

