Award Number: W81XWH-12-1-0399

TITLE: Small Molecule Inhibitors of ERG and ETV1 in Prostate Cancer

PRINCIPAL INVESTIGATOR: Colm Morrissey

CONTRACTING ORGANIZATION: University of Washington
Seattle WA 98195-0001

REPORT DATE: September 2013

TYPE OF REPORT: Annual Report

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
1. REPORT DATE
September 2013

2. REPORT TYPE
Annual Report

3. DATES COVERED
01 September 2012 – 31 August 2013

4. TITLE AND SUBTITLE
Small Molecule Inhibitors of ERG and ETV1 in Prostate Cancer

5a. CONTRACT NUMBER
W81XWH-12-1-0399

5b. GRANT NUMBER
W81XWH-12-1-0399

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
Colm Morrissey

E-Mail: cmorriss@uw.edu

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Washington
4333 Brooklyn Ave
Seattle WA 98195-0001

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The research involves laboratory studies utilizing xenograft models to test the hypothesis that targeting a member of the ETS transcription factor family with small molecules such as YK-4-279 may effectively treat prostate cancers. In year one Dr. Morrissey was to obtain internal Environmental Health and Safety (EH&S), Institutional Review Board (IRB), Institutional Animal Care and Use Committee (IACUC), Human Research Protections Office (HRPO) and Animal Care and Use Review Office (ACURO) approval. During this time Dr. Aykut Uren at Georgetown University was to screen more potential ETS transcription factor inhibitors for use in animal studies. Dr. Uren was to meet with and supply Dr. Morrissey with the inhibitor. All approvals have been applied for and obtained except for ACURO approval, which we have applied for and are currently awaiting. Dr. Uren has met with and delivered the inhibitor to Dr. Morrissey. The animal studies have been designed. Once ACURO approval is obtained the animal studies will begin.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
UU

19a. NAME OF RESPONSIBLE PERSON
USAMRMC

19b. TELEPHONE NUMBER
(include area code)
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Body</td>
<td>1</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>1</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>2</td>
</tr>
<tr>
<td>Conclusion</td>
<td>2</td>
</tr>
<tr>
<td>References</td>
<td>3</td>
</tr>
<tr>
<td>Appendices</td>
<td>NA</td>
</tr>
</tbody>
</table>
Introduction

A group of chromosomal translocations were recently discovered in prostate cancer that fuses the 5' region of TMPRSS2 (a serine protease) gene to the 3' region of ETS transcription factor genes (1). TMPRSS2 is an androgen responsive gene and contributes only its promoter region and usually a very short exon-1 (2, 3). This causes aberrant expression of an ETS transcription factor in response to androgen. The most common ETS member involved in prostate cancer chromosomal translocations is ERG but other members such as ETV1, ETV4 and ETV5 have been also observed (4, 5). The more aggressive prostate cancers often contain these translocations, thus potentially increasing their utility as both diagnostic and prognostic marker (6-8). Cell culture and transgenic animal models suggest that increased expression of ETS members, as a result of the chromosomal translocations, increase cell invasion without affecting the proliferative potential (9-11). However, in some xenograft models reducing expression of TMPRSS2-ERG protein slows down prostate cancer growth (12, 13). Therefore, ETS proteins emerge as potential novel targets for treatment of primary and/or metastatic disease in prostate cancer.

We developed small molecule inhibitors that target protein products of chromosomal translocations containing ETS transcription factors (14). We further established that our lead compound, YK-4-279, directly binds to both ERG and ETV1 proteins (15). YK-4-279 inhibits ERG and ETV1 mediated transcriptional activity and subsequent cellular invasive phenotype of prostate cancer cell lines. These effects were only observed in prostate cancer cell lines containing ETS chromosomal translocations such as VCaP and LNCaP and absent in the PC3 prostate cancer cell line that does not contain any ETS chromosomal translocations. Expression of ERG in PC3 cells from an expression vector sensitized them to YK-4-279 and inhibiting ERG expression in VCaP resulted in resistance to YK-4-279 effect (15). Therefore, we hypothesize that targeting ETS family of transcription factors by small molecules will inhibit malignant phenotypes of human prostate cancer cells.

Body

The research involves laboratory studies utilizing xenograft models to test the hypothesis that targeting a member of the ETS transcription factor family with small molecules such as YK-4-279 may effectively treat prostate cancers. In year 1 Dr. Uren was to screen ETS transcription factors to test in animal models of prostate cancer at the University of Washington. Dr. Morrissey was to obtain all approvals to start the animal studies in year 2, meet with Dr. Uren to discuss the fine details of the animal studies and obtain inhibitor from Dr. Uren for the animal studies.

Dr. Morrissey received a 2% effort in year 1.

Key Research Accomplishments

1. Dr. Uren has screened and tested a variety of ETS transcription factor inhibitors
2. Dr. Uren provided inhibitor to Dr. Morrissey
3. The animal studies have been designed
4. Dr. Morrissey has applied for all approvals and is awaiting ACURO approval

No research studies were designated to Dr. Morrissey in year 1.
Reportable Outcomes

In year one Dr. Morrissey was to obtain internal Environmental Health and Safety (EH&S), Institutional Review Board (IRB), Institutional Animal Care and Use Committee (IACUC), Human Research Protections Office (HRPO) and Animal Care and Use Review Office (ACURO) approval. During this time Dr. Aykut Uren at Georgetown University was to screen more potential ETS transcription factor inhibitors for use in animal studies. Dr. Uren was to meet with and supply Dr. Morrissey with the inhibitor. All approvals have been applied for and obtained except for ACURO approval, which we have applied for and are currently awaiting. Dr. Uren has met with Dr. Morrissey the details of the animal studies have been worked out and Dr. Uren has delivered the inhibitor to Dr. Morrissey.

Conclusion

Once ACURO approval is obtained the animal studies will begin at the University of Washington. We have no publications to report.
References