Low Energy of Activation
Lithium-Ion Conducting Channel

IUSRT-4 22 Sep 2010

Dr. Lawrence Scanlon
Thermal & Electrochemical Branch
Propulsion Directorate
Air Force Research Laboratory
Low Energy of Activation Lithium-Ion Conducting Channel
Outline

• Lithium Ion Conducting Channel
• Negative Electrostatic Potential field
 – Electron Delocalization
• Low Energy of Activation
 – Single Crystals
 – Thin Film
• Conclusion
Conceptualized Lithium-Ion Conducting Channel

Macrocyclic ring precursor

ring separation

lithium cation
Channel Concept Based on Tetracene Bridging Unit with Dilithium Porphyrins Attached
Channel Concept Based on Tetracene Bridging Unit with Dilithium Porphyrins Attached
Negative Electrostatic Potential Contours for Two Porphyrin Dianions Separated by 7 Å. (E_2, E_1 - Electrostatic Potential)

$|E_2 - E_1| = 0.01 \text{eV}$
Dilithium Phthalocyanine (Li$_2$Pc)
Calculated Electrostatic Potential Contours Obtained from Configurations Representative of Molecular Self-assembly of Li$_2$Pc Molecules; Side View (Above Left), Calculated Contours are for the Li$_2$Pc Molecule in the Middle; Profiles of Electrostatic Potential Contours as Viewed from the Top (Right and Below) of the Molecular System.

X-ray Crystal Structure of Li$_2$Pc

Arrhenius Plot of Ionic Conductivity for a Pressed Pellet of Single Crystals of Li$_2$Pc Sandwiched Between Gold Electrodes (710 µm Thick; 1.6 cm2)

$E_a = 0.038$ eV

$y = 7.16949E-04e^{-4.43368E+02x}$

$R^2 = 9.33118E-01$

ECS Transactions, 25 (36) 163-167 (2010)

Nyquist Plots of SS/Thin Film Li$_2$Pc Cast Onto an MnO$_2$ Cathode/SS at -50, -25, 0, +25, and 50°C
Arrhenius Plot of Ionic Conductivity for a Thin Film of Li$_2$Pc Cast Onto an MnO$_2$ Cathode at -50, -25, 0, +25, and 50°C

\[y = 0.0257e^{-7.25094E+02x} \]

\[R^2 = 0.9998 \]

\[\sigma = 2.7 \text{ mS/cm} \]

\[E_a = 0.063 \text{ eV} \]

\[\sigma = 1.0 \text{ mS/cm} \]
Conclusions

The energies of activation for ionic conduction within the pressed pellet of single crystals (0.038 eV) and the thin film of Li$_2$Pc dried at 160°C (0.063 eV) would suggest a very similar conduction mechanism.

The lithium ion conduction pathway might be parallel to the a-axis between the phthalocyanine rings since there is a negative electrostatic potential field between the parallel phthalocyanine rings and in effect provides a constant sphere of solvation for the lithium ion throughout the crystal lattice.
Authors

- L. G. Scanlon - Air Force Research Laboratory
- J. P. Fellner - Air Force Research Laboratory
- M. F. Lawson - Air Force Research Laboratory
- H. Xiao - Air Force Research Laboratory
- L. R. Lucente - University of Dayton Research Institute
- J. W. Lawson - University of Dayton Research Institute
- W. A. Feld - Wright State University
- P. B. Balbuena - Texas A&M University
- N. Munichandraiah - Indian Institute of Science
The authors would like to thank Dr. Chris Johnson from Argonne National Laboratory for providing the cathode for this investigation.