Southern Hemisphere humpback whales wintering off Central America: insights from water temperature into the longest mammalian migration

Kristin Rasmussen1,2,*, Daniel M. Palacios3,4, John Calambokidis5, Marco T. Saborío6, Luciano Dalla Rosa7,8, Eduardo R. Secchi7, Gretchen H. Steiger1, Judith M. Allen8 and Gregory S. Stone9

1 Cascadia Research Collective, 218 1/2 West Fourth Avenue, Olympia, WA 98501, USA
2 Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA
3 Joint Institute for Marine and Atmospheric Research, 1990 Pope MSB 311, Honolulu, HI 96822, USA
4 NOAA/NMFS/SWFSC/Environmental Research Division, 1352 Lighthouse Avenue, Pacific Grove, CA 93950, USA
5 Apartado 292-2300, San José, Costa Rica
6 Department of Zoology and Marine Mammal Research Unit, Fisheries Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
7 Brazilian Antarctic Program, Museu Oceanográfico Prof. Eliezer C. Rio, FURG, Rio Grande, RS 96200-970, Brazil
8 College of the Atlantic, 105 Eden Street, Bar Harbour, ME 04609, USA
9 New England Aquarium, Central Wharf, Boston, MA 02110, USA
*Author for correspondence (krasmussen@mml.calstate.edu).

We report on a wintering area off the Pacific coast of Central America for humpback whales (Megaptera novaeangliae) migrating from feeding areas off Antarctica. We document seven individuals, including a mother/calf pair, that made this migration (approx. 8300 km), the longest movement undertaken by any mammal. Whales were observed as far north as 11° N off Costa Rica, in an area also used by a boreal population during the opposite winter season, resulting in unique spatial overlap between Northern and Southern Hemisphere populations. The occurrence of such a northerly wintering area is coincident with the development of an equatorial tongue of cold water in the eastern South Pacific, a pattern that is repeated in the eastern South Atlantic. A survey of location and water temperature at the wintering areas worldwide indicates that they are found in warm waters (21.1–28.3°C), irrespective of latitude. We contend that while availability of suitable reproductive habitat in the wintering areas is important at the fine scale, water temperature influences whale distribution at the basin scale. Calf development in warm water may lead to larger adult size and increased reproductive success, a strategy that supports the energy conservation hypothesis as a reason for migration.

Keywords: humpback whale; Megaptera novaeangliae; migration; Central America; Antarctica; sea-surface temperature

1. INTRODUCTION

The long annual migrations of baleen whales from productive high-latitude areas used for feeding (feeding areas) to low-latitude oligotrophic areas used for breeding (wintering areas) are well known, but the selective forces driving them remain unclear. Several hypotheses have been proposed that include: a vestigial behaviour from when smaller ocean basins meant closer feeding and wintering areas (Evans 1987); the optimization of energy budgets by wintering in warm waters (Brodie 1975); increased calf (offspring) growth and survivorship in warm protected waters (Norris 1967); and avoidance of killer whale (Orcinus orca) predation at low latitudes (Corkeron & Connor 1999).

For humpback whales (Megaptera novaeangliae), which occur in all major ocean basins, wintering areas are at approximately 20° latitude in both hemispheres (Clapham & Mead 1999), while the feeding areas are found in temperate to polar waters within the same hemisphere. Both Mathews (1937) and Mackintosh (1942), however, reported humpback whale catches near the equator during the austral winter (July–October) off the western coasts of South America and Africa, and suggested that some Southern Hemisphere whales winter in areas north of the equator. Modern research has confirmed this off Ecuador and Colombia (approx. 0–7° N; Flórez-González et al. 1998; Félix & Haase 2001). We report on a wintering area in coastal Central America for humpback whales feeding off the Antarctic Peninsula, resulting in the longest documented mammalian migration. We also examine the water temperature at this wintering area and compare it with all other wintering areas worldwide to investigate the influence of temperature on humpback whale distribution at low latitudes.

2. MATERIAL AND METHODS

Data collection consisted of coastal marine mammal surveys conducted yearly off Central America between latitudes 7°46′ N and 11°06′ N during the austral winter from 2001 to 2004 (figure 1; Rasmussen 2006). Additional opportunistic observations made since 1993 were also included. Whenever encountered, humpback whales were identified using photographs of the unique markings on the ventral surface of the tail flukes (Katona & Whitehead 1981). Photographs were also collected off the Antarctic Peninsula between latitudes 61°14′ S and 66°45′ S during the austral summer from 1981 to 2004, as part of the Antarctic humpback whale catalogue (AHWC, n=965; Allen et al. 2006). These two photographic collections were compared to determine individual whales common to both areas.

We reviewed the geographical distribution of current humpback whale wintering areas worldwide based on the published literature (electronic supplementary material). For inclusion as a wintering area, we considered areas where small calves had been observed and where there were other behaviours by adults indicative of breeding, such as competitive groups and singing (Winn & Winn 1978; Tyack & Whitehead 1983; Baker & Herman 1984). Long-term mean sea-surface temperature (SST) for the month of peak whale occurrence in each wintering area was extracted from satellite-derived global monthly climatologies at 4 km grid resolution for the base period 1985–2001. These climatologies are distributed by NOAA’s National Oceanographic Data Center (http://www.nodc.noaa.gov/sog/pathfinder4km/).
Southern Hemisphere humpback whales wintering off Central America: insights from water temperature into the longest mammalian migration

Cascadia Research Collective, 218 W. 4th Avenue, Olympia, WA, 98501

Approved for public release; distribution unlimited

Security Classification of:
- a. Report: unclassified
- b. Abstract: unclassified
- c. This Page: unclassified

Limitation of Abstract:
- Same as Report (SAR)

Number of Pages: 13
Southern humpback whales off Central America

2 K. Rasmussen et al. Southern humpback whales off Central America

3. RESULTS
A total of 207 whales were sighted off Central America during the 2001–2004 austral winter surveys (figure 1). Mother/calf pairs, groups of competing males and singing males were all documented (Rasmussen 2006). Forty-one whales were individually identified photographically; of these, seven were also photographed off the Antarctic Peninsula. Three of these whales were seen within the same year; one off Costa Rica 262 days after it was seen off Antarctica and two (a mother/calf pair) off Antarctica 161 days after being seen off Costa Rica (table 1). The minimum distances between these locations, as determined by great-circle distances between straight segments around land masses, ranged from 8299 to 8461 km.

A total of 24 wintering areas were determined worldwide, all within 30° of the equator (figure 2; electronic supplementary material). A humpback whale population inhabiting the Arabian Sea was excluded from the analysis because it does not appear to undertake seasonal migrations (Mikhalev 1997). Climatological SSTs in all wintering areas were 21.1–28.3°C (electronic supplementary material), with no significant difference between Northern and Southern Hemispheres (t-test on the log-transformed data to homogenize the variance, p-value = 0.23). The interquartile SST range for all areas was 23.4–25.7°C, and the average was 24.6°C (±1.9°C s.d.).

4. DISCUSSION
The migrations reported here (up to 8461 km minimum travelling distance) are the longest movements documented for any mammal. The longest previously known migration was reported by Stone et al. (1990) for a humpback whale that moved between the Antarctic Peninsula and Colombia (7878 km according to our method; their reported 8334 km is probably an overestimate).

These trans-equatorial migrations between Antarctica and Central America are common for at least part of the humpback whale population in the eastern South Pacific. During this study, whales were regularly sighted off Panama and Costa Rica in the austral winter as far north as 11° N. Group composition (mother/calf pairs) and behaviours (competing males...
areas (Dawbin 1966; Herman & Antinoja 1977; were reported at other humpback whale wintering SST analysis (figure 2; electronic supplementary Whitehead & Moore 1982), consistent with our global (Findlay 1996) indicating area for eastern South Atlantic humpback whales coast of Africa, where an anomalously northerly wintering areas off Ecuador, Colombia and Central eastern South Pacific need to migrate farther north to and 2). This implies that humpback whales in the than 24 waters extending from the South American coast into upward and an equatorial cold tongue (figure 2). Thus, while the availability of suitable reproductive habitat at the wintering areas is important at the fine scale (e.g. Ersts & Rosenbaum 2003; Félix & Haase 2005), water temperature influences their distribution at the basin scale.

Our analysis shows that worldwide humpback whale wintering areas are found in warm coastal waters irrespective of latitude. In the ongoing debate on the reasons for migration, this result supports previous ideas linking temperature at the wintering areas to energetic strategies without the need to invoke killer whale avoidance. Clapham (2001) suggests that, as in some terrestrial mammals, energy conserved during offspring development can be devoted to growth, leading to larger size and increased reproductive success in adulthood. Thus, the temperature regime at the wintering areas, regardless of distance to the feeding areas, probably constitutes a major selective force driving humpback whale migration.

Figure 2. Worldwide distribution of wintering areas (black polygons) for (a) 10 Northern (A–F) and (b) 14 Southern (G–T) Hemisphere humpback whale populations (see electronic supplementary material for sources), overlaid on climatological SST for February and August, respectively. Letter codes bear no relationship to Southern Hemisphere stock designations by the IWC.

and singing males) were indicative of an area used for calving and mating. This area is probably an extension of the wintering area off Ecuador and Colombia (figure 1). The combined extent of these wintering areas (figure 2) may be a result of whales migrating further north to Central America due to space limitation or other density-dependent process.

Another unique aspect of this area is the spatial overlap with whales from the Northern Hemisphere. The work we have conducted off Central America during the boreal winter season (December–April) since 1996 indicates that this is also a wintering area for eastern North Pacific humpback whales migrating from feeding areas off California (Calambokidis et al. 2000). In fact, anecdotal whale sightings have been reported monthly off Central America (Rasmussen 2006), although the population identity of animals seen during the non-peak occurrence months remains undetermined. Eastern North and South Pacific populations share genetic traits indicating a trans-equatorial exchange, probably off Central America (Medrano-González et al. 2001).

The climatological August SST in the Central American wintering area is 28°C (electronic supplementary material). Temperatures between 24 and 28°C were reported at other humpback whale wintering areas (Dawbin 1966; Herman & Antinoja 1977; Whitehead & Moore 1982), consistent with our global SST analysis (figure 2; electronic supplementary material). Coastal upwelling and cold tongue development during the austral winter result in cool surface waters extending from the South American coast into the eastern equatorial Pacific, such that SSTs greater than 24°C only occur north of the equator (figures 1 and 2). This implies that humpback whales in the eastern South Pacific need to migrate farther north to wintering areas off Ecuador, Colombia and Central America. This pattern is observed again off the western coast of Africa, where an anomalously northerly wintering area for eastern South Atlantic humpback whales (Findlay et al. 1994; Walsh et al. 2000; Van Waerebeek et al. 2001) coincides with the occurrence of coastal upwelling and an equatorial cold tongue (figure 2). Thus, while the availability of suitable reproductive habitat at the wintering areas is important at the fine scale (e.g. Ersts & Rosenbaum 2003; Félix & Haase 2005), water temperature influences their distribution at the basin scale.

Funding was provided by the Homeland Foundation and the National Fish and Wildlife Foundation. Photographs were contributed by K. Robertson Chater and I. McWhirter. DMP was supported by award no. N00014-05-1-0045 from the US Office of Naval Research, National Oceanographic Partnership Program. Helpful comments were provided by P. J. Clapham, J. T. Harvey, R. L. Brownell, S. J. Bograd and an anonymous reviewer.

Biol. Lett.

THE DISTRIBUTION OF HUMPBACK WHALE WINTERING AREAS WORLDWIDE IN RELATION TO SEA-SURFACE TEMPERATURE

We conducted a review of the literature based on modern research to determine the location of humpback whale wintering areas worldwide, using the criteria described in the Methods section (see table A1 for a listing of sources). One known humpback whale population inhabiting the Arabian Sea was not included in this study because it does not appear to undertake seasonal migrations, but rather remains in tropical waters year-round (Mikhalev 1997). A total of 24 areas were identified, all within 30° of the equator. For three of these, information was inconclusive as to whether they are a true wintering area or part of the migratory route, but were still included in the analysis. Specifically, for the two Japanese areas, the Ryukyu and Bonin Island groups (F1 and F2 in figure 2 and table A1), calving may actually occur further south (Mori et al. 1998; Ohizumi et al. 2002). It also is unclear whether Baja California (B1), Mexico,
is an area used for calving, as humpback whales there are seen as early as September (Urban-R & Aguayo-L 1987), suggesting that this area may be a migratory corridor for whales going further south.

A polygon delineating the approximate extent of each wintering area was drawn over digital maps of climatological sea-surface temperature (SST) for the month of peak calving occurrence: February for the Northern Hemisphere and August for the Southern Hemisphere (Chittleborough 1958; Clapham & Mead 1999). The average SST and the standard deviation for all pixels inside a polygon were computed for each one of the 24 areas identified. These values are reported in table A1, where a letter code is used to identify each area in figure 2 of the paper (these letter codes bear no relationship to the Southern Hemisphere stock designations by the International Whaling Commission, IWC). The average SST for all wintering areas was 24.6°C (± 1.9°C s.d.). The three ambiguous areas B1, F1, and F2 had the lowest SSTs (21.09-21.91°C), such that if they were excluded, the global average would be 25.1°C (±1.4°C s.d.).

The relationship between mean latitude and mean SST at the wintering areas is presented in figure A1 in the context of latitudinal global SST range. Most wintering areas occur at or above the global mean SST for that latitude (colored curves in figure A1), and they are generally closer to the upper end of the global SST range (shaded areas in figure A1). In addition, with a few noteworthy exceptions, humpback whale wintering areas do not occur within 10° of the equator. At these latitudes, there is an actual dip in SST due to wind-induced equatorial upwelling processes, as evidenced by the colored curves in figure A1. The exceptions are the wintering areas for eastern South Pacific and eastern South Atlantic humpback whales, which migrate to the warm waters found north of the equator (see figure 2), and the wintering area for eastern North Pacific whales off Panama and Costa Rica, which may migrate past (south) of the
localized upwellings that occur in the Gulfs of Tehuantepec and Papagayo during boreal winter (see figure 2). These observations indicate that there is a global correlation between the distribution of humpback whale wintering areas and SST.

Finally, the Cape Verde Islands, a wintering area for eastern North Atlantic humpback whales (Reiner et al. 1996; Hazevoet & Wenzel 2000; Jann et al. 2003), stand out as an outlier in SST-latitude space (figure A1) due to their low mean SST (22.1°C), which is, again, influenced by low-latitude upwelling processes. Similarly low SSTs occur at the Gálapagos Islands in the eastern equatorial Pacific (figure 1), where recent research suggests that this archipelago may be a wintering area for eastern South Pacific humpback whales (Félix et al. 2006; D. M. Palacios, unpublished observations). We suggest that humpback whales may winter in areas with less than optimal water temperatures in areas that offer shallow, protected conditions, especially as populations continue to recover from depletion.

REFERENCES

Table A1. Climatological sea-surface temperature (SST, °C) and standard deviation (s.d., °C) for humpback whale wintering areas in both the Northern and Southern Hemispheres shown in figure 2. The northernmost, southernmost, easternmost, and westernmost coordinates of each polygon are given. Literature sources are listed below.

<table>
<thead>
<tr>
<th>Geographic Coordinates</th>
<th>SST</th>
<th>SD</th>
<th>N</th>
<th>S</th>
<th>E</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Hemisphere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Hawaii¹,²</td>
<td>24.15</td>
<td>0.31</td>
<td>22.44</td>
<td>17.74</td>
<td>-153.50</td>
<td>-160.59</td>
</tr>
<tr>
<td>B1 Mexico: Baja California³</td>
<td>21.09</td>
<td>0.79</td>
<td>25.65</td>
<td>21.81</td>
<td>-108.29</td>
<td>-112.33</td>
</tr>
<tr>
<td>B2 Mexico: mainland³</td>
<td>24.05</td>
<td>0.84</td>
<td>22.98</td>
<td>18.62</td>
<td>-103.85</td>
<td>-107.21</td>
</tr>
<tr>
<td>B3 Mexico: Revillagigedos³</td>
<td>24.32</td>
<td>0.30</td>
<td>20.11</td>
<td>17.96</td>
<td>-110.36</td>
<td>-115.31</td>
</tr>
<tr>
<td>C Central America⁴</td>
<td>28.27</td>
<td>0.96</td>
<td>11.42</td>
<td>7.25</td>
<td>-80.79</td>
<td>-85.62</td>
</tr>
<tr>
<td>D West Indies⁵,⁶</td>
<td>26.11</td>
<td>0.27</td>
<td>21.95</td>
<td>10.49</td>
<td>-60.03</td>
<td>-71.62</td>
</tr>
<tr>
<td>E Cape Verde Islands⁷,⁸,⁹</td>
<td>22.10</td>
<td>0.36</td>
<td>17.37</td>
<td>14.47</td>
<td>-22.51</td>
<td>-25.68</td>
</tr>
<tr>
<td>F1 Japan: Ryukyu Islands¹⁰,¹¹,¹²,¹³</td>
<td>21.60</td>
<td>0.44</td>
<td>29.81</td>
<td>24.66</td>
<td>131.31</td>
<td>126.32</td>
</tr>
<tr>
<td>F2 Japan: Bonin Islands¹¹,¹²,¹³,¹⁴,¹⁵,¹⁶</td>
<td>21.91</td>
<td>1.13</td>
<td>28.74</td>
<td>23.33</td>
<td>143.47</td>
<td>140.30</td>
</tr>
<tr>
<td>F3 Mariana Islands¹²,¹⁶</td>
<td>26.96</td>
<td>0.42</td>
<td>20.06</td>
<td>12.92</td>
<td>146.56</td>
<td>144.43</td>
</tr>
<tr>
<td>Southern Hemisphere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G Tonga¹⁷,¹⁸</td>
<td>24.34</td>
<td>0.68</td>
<td>-18.00</td>
<td>-21.97</td>
<td>-173.18</td>
<td>-176.41</td>
</tr>
<tr>
<td>H Cook Islands¹⁷,¹⁸,¹⁹</td>
<td>25.07</td>
<td>0.63</td>
<td>-18.07</td>
<td>-21.72</td>
<td>-156.02</td>
<td>-163.15</td>
</tr>
<tr>
<td>I Polynesia¹⁷,¹⁸,²⁰</td>
<td>25.93</td>
<td>0.88</td>
<td>-14.08</td>
<td>-22.05</td>
<td>-139.05</td>
<td>-153.04</td>
</tr>
<tr>
<td>J Central America⁴</td>
<td>28.00</td>
<td>0.79</td>
<td>11.17</td>
<td>6.86</td>
<td>-78.27</td>
<td>-86.40</td>
</tr>
<tr>
<td>K Colombia and Ecuador²¹,²²,²³,²⁴,²⁵</td>
<td>25.67</td>
<td>2.23</td>
<td>7.13</td>
<td>-2.79</td>
<td>-76.76</td>
<td>-81.70</td>
</tr>
<tr>
<td>L Brazil²⁶,²⁷,²⁸</td>
<td>25.37</td>
<td>1.05</td>
<td>-5.02</td>
<td>-19.73</td>
<td>-34.21</td>
<td>-40.72</td>
</tr>
<tr>
<td>M West Africa²⁹,³⁰,³¹,³¹</td>
<td>24.89</td>
<td>2.79</td>
<td>7.11</td>
<td>-3.35</td>
<td>11.39</td>
<td>1.85</td>
</tr>
<tr>
<td>N East Africa²⁹</td>
<td>24.08</td>
<td>1.84</td>
<td>-14.92</td>
<td>-26.66</td>
<td>42.76</td>
<td>32.42</td>
</tr>
<tr>
<td>O S Madagascar²⁹,³³,³⁴,³⁵</td>
<td>23.20</td>
<td>0.61</td>
<td>-21.77</td>
<td>-27.14</td>
<td>49.39</td>
<td>42.29</td>
</tr>
<tr>
<td>P NE Madagascar³⁴</td>
<td>24.02</td>
<td>0.22</td>
<td>-15.19</td>
<td>-18.06</td>
<td>51.22</td>
<td>48.30</td>
</tr>
<tr>
<td>Q NW Australia²⁶,³⁷,³⁸,³⁹</td>
<td>25.54</td>
<td>0.90</td>
<td>-14.71</td>
<td>-19.86</td>
<td>126.08</td>
<td>120.61</td>
</tr>
<tr>
<td>R NE Australia⁴⁰,⁴¹,⁴²</td>
<td>23.43</td>
<td>0.87</td>
<td>-17.08</td>
<td>-21.78</td>
<td>151.06</td>
<td>147.01</td>
</tr>
<tr>
<td>S New Caledonia¹⁷,¹⁸,⁴³</td>
<td>23.30</td>
<td>0.57</td>
<td>-18.99</td>
<td>-23.23</td>
<td>167.73</td>
<td>162.79</td>
</tr>
<tr>
<td>T Samoa¹⁸</td>
<td>26.25</td>
<td>0.50</td>
<td>-13.70</td>
<td>-17.94</td>
<td>169.60</td>
<td>165.27</td>
</tr>
</tbody>
</table>

21 Clarke, R. 1962 Whale observation and whale marking off the coast of Chile in 1958 and from Ecuador towards and beyond the Galápagos Islands in 1959. Norsk Hvalfangsttid. 51, 265-87.

Figure A1. Mean latitude vs. mean SST at the wintering areas for Northern (blue circles) and Southern (red circles) Hemisphere humpback whale populations. Error bars are the standard deviations reported in table A1, and are a measure of the spatial variability of SST within each wintering area. Shaded areas represent the global range of SST at a given latitude for February (light blue) and for August (light red). Solid curves are the global mean (blue for February and red for August, respectively). Horizontal black line corresponds to the average SST for all wintering areas (24.6°C). Vertical black dashed lines at 10° S, 0°, and 10° N are drawn for reference. Names of selected wintering areas are mentioned in the text.