Technical Report ARWSB-TR-11012

Comments on "What the Vector Potential Measures" by E. J. Konopinski

Paul J. Cote and Mark A. Johnson

December 2010

ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER
Armaments Engineering & Technology Center
Weapon Systems & Technology

Approved for public release; distribution is unlimited.
Comments on "What the Vector Potential Measures" by E. J. Konopinski

The seminal paper on the meaning of the vector potential by E. J. Konopinski is revisited. The significance of this work has not been generally recognized to date. We first briefly review Konopinski's findings and show that many of his key results can be obtained from a simpler and more familiar approach. We then discuss the additional implications of his analyses, which were overlooked by Konopinski himself.

E.J. Konopinski, vector potential, electromagnetism, Coulomb potential, and Bohm-Ahronov effect.
INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g., 30-06-1998; xx-08-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as final, technical, interim, memorandum, master’s thesis, progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as they appear in the report, e.g. 1F665702D1257.

5c. PROGRAM ELEMENT NUMBER. Enter all program element numbers as they appear in the report, e.g. AFOSR-82-1234.

5d. PROJECT NUMBER. Enter all project numbers as they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORS AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the organization(s) financially responsible for and monitoring the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S). Enter report number as assigned by the sponsoring/monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200 words) factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.
Table of Contents

Abstract ... 1
Comments on “What the Vector Potential Describes” ... 2
References .. 4
Abstract

The seminal paper on the meaning of the vector potential by E. J. Konopinski is revisited. The significance of this work has not been generally recognized to date. We first briefly review Konopinski’s findings and show that many of his key results can be obtained from a simpler and more familiar approach. We then discuss the additional implications of his analyses, which were overlooked by Konopinski himself.
A review of current textbooks and articles on classical electromagnetism indicates that the main results of Konopinski’s groundbreaking analyses[1] of the vector potential have been ignored to date. (Our private communications with several recognized authorities on the subject lend support the view that there is a general lack of awareness of Konopinski’s main results.) The aim of this Note is to alert the scientific community of the existence and full implications of this important paper by a distinguished physicist.

Konopinski’s analyses demonstrate the fallacy of the generally held view that the vector potential \(A \) has no physical meaning in classical electromagnetism. His paper follows up on Feynman’s complaint that a bias exists regarding the vector potential [2]. Konopinski attributes this bias to erroneous notions arising from the gauge concept. By contrast, it is generally recognized from the Bohm-Ahronov effect that \(A \) has physical meaning as a real “field” in quantum mechanics [2].

The Coulomb potential \(\varphi \) has never been subjected to any such bias about its reality as a field. Its reality as a stored potential energy of a unit test charge in an existing field is generally accepted. Invoking the conservation of energy, one can, in principle, experimentally map out a scalar field, at least for a static or quasi-static case. So the scalar potential has physical meaning, and its magnitude at all points in space can be determined experimentally, which satisfies the requirement for treating the scalar potential as a real field.

Konopinski’s approach is to show that the generalized momentum, \(p = M\dot{v} + qA \), is a conserved quantity (in static or quasi-static cases) along any path where the gradients of \(A \) and \(\varphi \) vanish. Any change in \(A \) will produce a compensating change in the charged particle momentum \(M\dot{v} \) to preserve the conservation of generalized momentum along that path. Thus, \(A \) can be viewed as the momentum “stored” in the system comprised of a of a unit test charge in an external magnetic field.

Konopinski uses the same infinite solenoid example as in the Bohm-Ahronov effect to illustrate how one can, in principle, experimentally measure \(A \) at all points in space. By applying a series of concentric rings around the solenoid, each with a unit charge on a sliding bead, one can measure \(A \) for all points in space and time by monitoring the associated changes in the bead momentum \(M\dot{v} \) arising from solenoid current changes and applying conservation of momentum (conservation of angular momentum in this case). Thus, the vector potential satisfies the criteria for a “real” field: \(A \) has physical meaning and its characteristics are experimentally accessible at every point in space. One of Konopinski’s major accomplishments is that both classical and quantum mechanics are now on the same footing regarding the primacy of the potential formulations. This difference in views of the reality of \(A \) in classical and quantum physics was an inconsistency that eventually had to be eliminated.
To complement Konopinski’s more general development, we next offer a simple, alternative approach using a more elementary formulation. The magnetic field B is given by,

$$B = \nabla \times A ,$$ \hspace{1cm} (1)

and the total electric field, E, (sum of Coulomb and induced fields) is given by,

$$E = E_C + E_I = -\nabla \phi - \partial A/\partial t$$ \hspace{1cm} (2)

Although never stated explicitly in the literature, the relationship for E_I in Eq. 2,

$$E_I = -\partial A/\partial t,$$ \hspace{1cm} (3)

is actually an expression of Faraday’s induction law, which, we suggest, should generally be framed as such to properly recognize its stature. This would also serve to better represent Konopinski’s conclusion regarding the physical meaning and measureability of A. Faraday’s law is usually expressed in terms of a closed line integral of the induced electric E_I. This severely limits its utility to cases of high symmetry, while Eq. 3 is completely general. Furthermore, the electric field formulation relies on the outmoded “action at a distance” concept, made obvious here by the fact that $B = 0$ everywhere outside the solenoid. Explicitly recognizing the stature of Eq.3 as a fundamental law of physics directly illustrates that the vector potential A is real and meaningful because its time derivative is real and meaningful. In other words, since E_I is a real field, then A must be a real field because it is the source of E_I at every point in space.

Using this form of the law of induction (Eq. 3), one can experimentally determine A with the same solenoid setup (without explicitly invoking generalized momentum conservation) by increasing the solenoidal current from zero to its value at time t while concurrently monitoring the change in the bead momentum. There are no external Coulomb fields, and no gradients in A along the ring so the force on the unit charged bead of mass M is given by $F = d(Mv)/dt = -\partial A/\partial t = -dA/dt$, giving $A(t) = -Mv(t)$. In this alternative approach, A is given physical meaning through Faraday’s law of induction, and its measureability is demonstrated by using Konopinski’s solenoid apparatus.

The next point of this Note relates to a second major inconsistency which Konopinski overlooked. In deriving the analytic expression for A outside the infinite solenoid, he invokes the “Coulomb gauge” $\nabla \cdot A = 0$ in the usual manner as a “convenient choice”. So, on the one hand, A is physically real and measureable, while on the other, $\nabla \cdot A$ is completely arbitrary. The generally accepted view that $\nabla \cdot A$ is completely arbitrary is an absurdity if Konopinski’s conclusions are correct, because the determination of A for all points in space and time determines its divergence. The resolution of this apparent paradox
is found by recognizing a general carelessness in applying the Lorenz gauge concept. Recall that one can always transform the real, physically meaningful potentials to the primed variables according to the Lorenz prescription,

$$\mathbf{A}' = \mathbf{A} + \nabla \theta; \quad \varphi' = \varphi - \frac{\partial \theta}{\partial t},$$ \hspace{1cm} (4)

where θ is an arbitrary function of time and space. Although neither \mathbf{A}' nor φ' are physically meaningful, the Lorenz transformation leaves E in Eq. 2 unchanged and physically meaningful. So, it is \mathbf{A}' whose divergence is arbitrary in the Lorenz gauge, not \mathbf{A}. There is no choice for $\nabla \cdot \mathbf{A}$ because, unlike \mathbf{A}', \mathbf{A} is not physically meaningless.

Another frequently repeated form of the error used to justify the Coulomb gauge in the literature is that \mathbf{A} is defined by Eq. 1, so one can always add any gradient function of space and time to \mathbf{A} without altering the physics of the problem. This is false. The vector potential is defined by both Eq. 1 and Eq 3. One must apply the proper Lorenz transformation given by Eq. 4 to both \mathbf{A} and φ to preserve the correct physics. The fundamental reason that $\nabla \cdot \mathbf{A} = 0$ in the present case is that all solenoidal fields are solenoidal. There are no sources or sinks for E_I, so there can be no sources or sinks for $\partial \mathbf{A}/\partial t$ in Eq. 3, which, in turn, means that $\nabla \cdot \mathbf{A}$ must be zero. Physics dictates $\nabla \cdot \mathbf{A}$. It is not a matter of mathematical convenience.

Any doubts about $\nabla \cdot \mathbf{A}$ can be removed by performing Konopinski’s experiment. The betatron offers a sufficiently close experimental arrangement so it can be viewed as a device for experimentally determining $\nabla \cdot \mathbf{A}$. The fact that betatrons perform as designed is direct experimental proof of the validity of the analytic expressions for derived for \mathbf{A} under the assumption that $\nabla \cdot \mathbf{A} = 0$. So, the betatron offers direct experimental proof that $\nabla \cdot \mathbf{A}$ is not arbitrary.

In our view, one cannot overstate the importance of Konopinski’s paper: it clarifies the basic physics of the vector potential, eliminates major inconsistencies, and provides a strong argument for the primacy of the potentials over the electric field variables. (See ref 3 for further discussions of improper applications of the gauge concept.)

References