Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2011
4. TITLE AND SUBTITLE

Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2011

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312
ph: (800) 553-NTIS (6847)
email: orders@ntis.gov <http://www.ntis.gov/about/form.aspx>
 Online ordering: http://www.ntis.gov

This document was printed on recycled paper.
(8/2010)
Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2011

Final Report

HL Diefenderfer AM Coleman Y Ke CM Woodley
GE Johnson KE Buenau EM Dawley¹
NK Sather JD Tagestad JR Skalski²

May 2012

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352

¹ Independent fisheries consultant, Astoria, Oregon.
² University of Washington, School of Aquatic and Fishery Sciences, Columbia Basin Research, Seattle, Washington
Preface

This research was performed under the auspices of the U.S. Army Corps of Engineers (USACE) Columbia River Fish Mitigation Program, Anadromous Fish Evaluation Program. The study code is EST-P-09-1 and the study title is Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary. The study was funded by the U.S. Army Corps of Engineers Portland District (CENWP) (Ref. No. W66QKZ10249512) under agreements with the U.S. Department of Energy and the U.S. Department of Commerce for work by Pacific Northwest National Laboratory (PNNL). Subcontractors to PNNL included the University of Washington and Mr. Earl Dawley (National Marine Fisheries Services-retired). Ms. Cynthia Studebaker was the CENWP’s technical lead for the study.

Report Citation:

Acknowledgments

The research reported herein did not include field data collection, and instead relied on collaborative efforts with other concurrent projects to provide the data used for pilot testing measurement and indexing methods. Accordingly, we thank the staff involved with the following projects: 1) Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Lower Columbia River, a Bonneville Power Administration project begun in 2007 (BPA 2005-001-00), now transitioned to a USACE Columbia River Fish Mitigation Program project (EST-P-11-NEW); 2) Evaluating Cumulative Ecosystem Response to Habitat Restoration Projects in the Lower Columbia River and Estuary, an Army Corps of Engineers Portland District project begun in 2004 (EST-02-P-04); and 3) the Ecosystem Monitoring and Reference Sites projects of the Lower Columbia River Estuary Partnership, funded by the Bonneville Power Administration, especially Amy Borde (PNNL). In addition, we thank Susan Ennor and Mike Parker for editing and formatting the report.
Acronyms and Abbreviations

ATIIM Area-Time Inundation Index Model
BiOp Biological Opinion
BPA Bonneville Power Administration
CEERP Columbia Estuary Ecosystem Restoration Program
cm centimeter(s)
DNA deoxyribonucleic acid
ELHD Early Life History Diversity
ERTG Expert Regional Technical Group
ESA Endangered Species Act
FCRPS Federal Columbia River Power System
GIS geographic information system
HIS habitat suitability index
HSM habitat suitability model
IGF insulin-like growth factor
IGFBP insulin-like growth factor binding proteins
LCRE lower Columbia River and estuary
LCREP Lower Columbia River Estuary Partnership
LiDAR Light Detection and Ranging
MSL Marine Sciences Laboratory
MWSEF maximum water surface elevation frequency
NOAA National Oceanic and Atmospheric Administration
PNNL Pacific Northwest National Laboratory
RME research, monitoring, and evaluation
RNA ribonucleic acid
RPA Reasonable and Prudent Alternative
RSF resource selection function
SBU survival benefit unit
SDM Species Distribution Model
USACE U.S. Army Corps of Engineers or Corps
USFWS U.S. Fish and Wildlife Service
WSE water surface elevation
Contents

Preface .. iii
Acknowledgments ... v
Acronyms and Abbreviations ... vii
1.0 Introduction .. 1.1
 1.1 Relevance to Columbia Estuary Ecosystem Restoration Program Goal 1.1
 1.2 Study Research Goal and Objectives ... 1.1
 1.3 Study Background and Approach .. 1.2
 1.4 Study Rationale .. 1.2
 1.5 Report Contents and Organization ... 1.4
2.0 Methods and Results ... 2.1
 2.1 Site Area Modeling for Restoration Project Planning .. 2.1
 2.1.1 Problem Statement and Background ... 2.1
 2.1.2 Research Objectives .. 2.1
 2.1.3 Methods ... 2.1
 2.1.4 Key Results ... 2.2
 2.2 Computer-Assisted Dike Layer Extraction .. 2.4
 2.2.1 Problem Statement and Background ... 2.4
 2.2.2 Research Objectives .. 2.4
 2.2.3 Methods ... 2.4
 2.2.4 Key Results ... 2.5
 2.3 Early Life History Diversity Index ... 2.6
 2.3.1 Problem Statement and Background ... 2.6
 2.3.2 Research Objectives .. 2.6
 2.3.3 Methods ... 2.6
 2.3.4 Key Results ... 2.6
 2.4 Physiology Literature Review .. 2.8
 2.4.1 Problem Statement .. 2.8
 2.4.2 Research Objectives .. 2.8
 2.4.3 Methods ... 2.8
 2.4.4 Key Results ... 2.8
 2.5 Species-Habitat Modeling Literature Review .. 2.9
 2.5.1 Problem Statement .. 2.9
 2.5.2 Research Objectives .. 2.9
 2.5.3 Methods ... 2.9
 2.5.4 Key Results ... 2.9
 2.6 Conceptual Model of the Benefits of Estuarine Habitat Restoration for Juvenile Salmon .. 2.10
2.6.1 Problem Statement .. 2.10
2.6.2 Research Objectives ... 2.10
2.6.3 Methods ... 2.11
2.6.4 Key Results ... 2.11

3.0 Management Implications and Recommendations ... 3.1
3.1 Management Implications ... 3.1
3.1.1 Habitat Connectivity ... 3.1
3.1.2 Early Life History Diversity ... 3.1
3.1.3 Survival Benefits .. 3.1
3.2 Recommendations ... 3.2
3.2.1 Habitat Connectivity ... 3.2
3.2.2 Early Life History Diversity ... 3.2
3.2.3 Survival Benefits .. 3.2
3.3 Relevance to the 2008 Biological Opinion on FCRPS Operations 3.3

4.0 References .. 4.1
Appendix – Technical Memoranda.. A.1

Figures

2.1 Estuary-wide view of the extraction results compared to existing dike layer.................. 2.5
2.2 Early life history diversity index, April–December.. 2.7
2.3 Preliminary conceptual model of direct and indirect juvenile salmon survival benefits from habitat restoration in the lower Columbia River and estuary.. 2.12

Tables

2.1 Spatial data output from the ATIIM model. ... 2.2
2.2 Tabular data output produced by the ATIIM model... 2.2
2.3 Unmarked Chinook salmon count data... 2.7
1.0 Introduction

This report describes the 2011 research conducted under the U.S. Army Corps of Engineers (USACE or Corps) project EST-P-09-1, Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary. The research was conducted by the Pacific Northwest National Laboratory (Marine Sciences Laboratory [MSL], Hydrology Group, and Ecology Group), in partnership with the University of Washington, School of Aquatic and Fishery Sciences/Columbia Basin Research, and Mr. Earl Dawley. This Columbia River Fish Mitigation Program project, informally called “Salmon Benefits,” was started in fiscal year 2009 to evaluate and advance the state of the science regarding the ability to quantify the benefits of habitat restoration actions in the lower Columbia River and estuary to listed salmonids.

1.1 Relevance to Columbia Estuary Ecosystem Restoration Program Goal

The goal of the Columbia Estuary Ecosystem Restoration Program (CEERP) is to understand, conserve, and restore ecosystems in the lower Columbia River and estuary (LCRE). Four key management questions underlying the CEERP program (Action Agencies 2012) are as follows:

1. What are the limiting factors or threats, i.e., stressors and controlling factors, in the estuary preventing the achievement of desired habitat or fish performance?
2. Which actions are most effective at addressing the limiting factors preventing achievement of habitat, fish, or wildlife performance objectives?
3. Are the estuary habitat actions achieving the expected biological and environmental benefits, e.g., survival benefit unit (SBU) targets?
4. What adjustments should be made, if any, to improve the ability of the SBU crediting method to predict benefits to Endangered Species Act (ESA)-listed fish from ecosystem protection and restoration in the LCRE?

Research, monitoring, and evaluation (RME) includes compliance monitoring, implementation monitoring, status and trends monitoring, action effectiveness monitoring and research, and critical uncertainties research (Johnson et al. 2008). This study predominantly addresses management questions 3 and 4 (above) by developing science-based methods to use for status and trends monitoring, action effectiveness research and monitoring, and project prioritization. Methods and indices have the capacity to compare pre- to post-project and program conditions at varying landscape scales, as appropriate. Results are transferrable to restoration practitioners for project planning and design and to managers for program evaluation. Results of analyses using the methods we developed may inform the Expert Technical Regional Group’s assignment of SBUs.

1.2 Study Research Goal and Objectives

The primary goal of this study is to establish scientific methods to quantify benefits from habitat restoration to listed salmon and trout in the LCRE, from Bonneville Lock and Dam to the mouth of the

1 Listed salmon include Chinook, coho, chum, sockeye, steelhead, and trout.
river, through indices for three required areas (see the Biological Opinion (BiOp) on operation of the Federal Columbia River Power System (FCRPS)): habitat connectivity, early life history diversity, and survival. The CEERP’s working hypothesis of this research is that habitat restoration in the LCRE benefits outmigrating, listed juvenile salmon and trout. Ancillary hypotheses are that these benefits can be measured by indices of 1) habitat connectivity, 2) early life history diversity, and 3) survival. In addition, this study supports the Corps in its ecosystem restoration actions in the LCRE under multiple Water Resources Development Act authorities.

Based on recommendations from the 2009-2010 study (Diefenderfer et al. 2010), the objectives of the 2011 study were as follows:

1. Habitat Connectivity Index: Extend spatial and temporal (trends) scope of structural/hydrologic metrics including passage barrier accounting metric and nearest neighbor distance, and continue development of salmon-specific functional component.

2. Early Life History Diversity (ELHD) Index: Perform a retrospective analysis of historic juvenile fish catch data to assess multi-decadal trends in the binary ELHD index, develop an ELHD index that incorporates fish density, test the new ELHD index, and solicit peer review of the ELHD index.

3. Survival Benefits: Review literature on physiology of outmigrating salmonids in the LCRE with the intent to evaluate the applicability of common physiological measures to use for assessing the benefits to juvenile salmon from restoration in estuaries, assess the use of fish growth measures as indicators of fish response to habitat restoration, and recommend the best measures to pursue in future research on indexing habitat benefits. The final element of the survival objective is to explain terms and concepts relevant to modeling the relationships between habitat characteristics and species distribution and the use and capabilities of the primary approaches (statistical vs. mechanistic) in species-habitat modeling, and develop the basis for a conceptual model of restoration benefits.

1.3 Study Background and Approach

The approach of this project is to develop and apply quantitative methods for statistical analysis and spatial data processing to evaluate the three subject indices: habitat connectivity, ELHD, and survival. This study began with a comprehensive literature review in 2009 to specifically define each of the three subject areas, evaluate relevant existing methods, and assess the feasibility of indexing or otherwise measuring the three subject topics, as detailed in the 2009 Annual Report (Diefenderfer et al. 2010). In particular, this study was initiated to address gaps in coverage of BiOp Reasonable and Prudent Alternative (RPA) Actions 58, 59, and 60: habitat connectivity, life history diversity index, and restoration-associated survival benefits. Pilot testing, begun in 2009, continued with the addition of a field data collection element in 2010, described in the 2010 Annual Report (Diefenderfer et al. 2011). In 2011, a survival benefits conceptual modeling effort was introduced, and development and testing of quantitative habitat connectivity and ELHD indices continued, with no field work conducted in this current project year. Also in 2011, a coordinated laboratory-field data collection element was designed to build on the findings of the 2010 field effort and further inform survival benefits metric development, although the focus of the study remains on quantitative method development and testing.

1.4 Study Rationale

A goal of the LCRE habitat restoration effort is to increase habitat connectivity, a measure of the degree to which habitats in a landscape matrix are physically connected or spatially continuous and the ability of one or more target species or populations to access these habitats. Increased habitat
connectivity may benefit salmon populations by increasing the opportunity for juvenile salmonids to access shallow-water, off-channel habitats where they can forage in suitable environmental conditions and find refuge from predators during their migration to the ocean (Simenstad and Cordell 2000). At the landscape scale, habitat connectivity is an indicator of the linkages between habitats that have important functions in the ecosystem. Habitat connectivity is affected directly by passage barriers, such as dikes, levees, tidegates, and culverts (Kukulka and Jay 2003). These structures are stressors in the LCRE because they restrict access by salmon to wetland habitats, and in some cases, have also significantly altered the environmental conditions of the habitats behind them (Simenstad and Feist 1996). Habitat restoration actions in the LCRE are expected to improve habitat opportunity for listed salmonids, and more specifically, to increase tidal wetland habitat currently accessible within a given geographic area (NMFS 2008; Roegner et al. 2009). However, these length and area values vary temporally with water level in an estuary, which in turn varies with the regulated flow of the Columbia River, sea level, and tides (Diefenderfer et al. 2008), and are further modified by reach-specific conditions such as large woody debris (Diefenderfer and Montgomery 2009). A method for quantifying and periodically monitoring habitat connectivity has not been developed and applied in the LCRE as required by RPA Action 59. Action 59 addresses the following management question: What is the extent of habitat connectivity by reach and is it increasing? This project is developing a habitat connectivity index based on hydrographic, topographic, and fish presence data to provide a way to track status and trends of habitat connectivity after restoration actions within major reaches of the lower Columbia River.

Early life history diversity is a measure of different spatial and temporal patterns of migration, habitat use, spawning, and rearing displayed within a species of Pacific salmon (from Johnson et al. 2008), which likely contributes to the resilience of salmonid populations in a fluctuating environment. The ELHD of salmonid populations in the Columbia basin is believed to have decreased in the last 100 years (Bottom et al. 2005), and one of the goals of habitat restoration in the LCRE is to reverse this trend (Johnson et al. 2008). Fresh et al. (2005) stated that maintenance of ELHD is an “especially critical portion of the role of the estuary.” For example, the Columbia River below Bonneville Dam may provide important overwintering areas for subyearling Chinook salmon, a hypothesis that is currently under investigation (Sobocinski et al. 2008; Sather et al. 2009; Johnson et al. 2010). Therefore, an understanding of trends in ELHD is important for assessing the performance of restoration projects. As called for by RPA Action 58, a quantitative method is needed to index and periodically monitor the ELHD of salmonids in the LCRE. Action 58 addresses a key management question: What is the level of ELHD in salmonid species in the LCRE and is it increasing? This project is developing a method for determining the status and trends of species-specific ELHD indices in the LCRE for Chinook and other species as data permit.

The 2008 BiOp included an assessment of the survival benefits of habitat restoration actions in the LCRE proposed in the Biological Assessment. The assessment was necessarily based on professional judgment using the best available knowledge, because data on incremental benefits to juvenile salmon survival associated with specific restoration projects are not available. Direct measurements of survival rates would require telemetry methods (e.g., Perry and Skalski 2006; Skalski and Griswold 2006) such as those pilot tested at the site scale during 2010 research under this project (Diefenderfer et al. 2010, 2011). However, acoustic-tag technology would need to be miniaturized to holistically estimate survival of salmon and trout through the estuary (Diefenderfer et al. 2010), because beach seine catches indicate that the size structure is skewed toward smaller salmon nearer to shorelines (Fresh et al. 2005; Sather et al. 2009, 2011; Johnson et al. 2010; Diefenderfer et al. 2011) and smaller fish generally have longer residence times (Campbell 2010).
Given these limitations, survival benefits may be assessed indirectly through measures such as fish habitat usage and fish condition, as noted in the literature review in the first annual report of this project (Diefenderfer et al. 2010, Table 4.1) and subsequently pursued in this project’s research. Under this approach, measures may include growth of marked fish, diet, residence time, foraging success, or physiology (Fresh et al. 2005; Bottom et al. 2005). The strongest inference of survival benefits from habitat restoration in the LCRE would be gained by using multiple measurement methods, including fish condition and telemetry at the site (residence time), reach, and estuary scales, integrated into a single index (Diefenderfer et al. 2010, Table 4.1). This approach is fundamentally based on the food web, particularly the direct contribution of primary productivity in wetland habitats on islands and the floodplain to macrodetritus-based salmonid prey production as well as the indirect effect on environmental conditions such as temperature in the main stem river, which in turn affects phytoplankton, zooplankton, and insects (ISAB 2011, p.183-189; Diefenderfer et al. in preparation). Because the majority of wetland habitats in the lower river and estuary have been eliminated over the last 150 years, with a concomitant 82% decrease in macrodetritus mass, the restoration of this food-web function is a primary rationale for the habitat restoration effort in the region (Sherwood et al. 1990; ISAB 2011, p.186).

Despite the importance of salmonid growth rates to habitat and population models and spatial management, sensitive measurements of growth rates are not well documented in the Columbia River estuary. While otolith microstructure has been successful at estimating growth (e.g., Campbell 2010), it is a lethal method and thus not desirable for use with many ESA species. Subsequently, a renewed interest has occurred in using physiological and biochemical measures, such as RNA/DNA ratios and protein and lipid concentrations, as a nonlethal approach to growth indices. An understanding of the effects of restoration actions on habitat properties and, in turn, juvenile salmon condition is needed for an ecosystem conceptual model of the LCRE, a foundational tool for successful, systematic implementation of ecological restoration (Thom et al. 2010) that is being updated in Salmon Benefits project work. The research need regarding survival or other benefits pertains to RPA Action 60, which called for the evaluation of habitat restoration actions and addresses a third key management question: What are the survival benefits from LCRE habitat restoration efforts and are they increasing? This project is developing estimators of restored tidal wetland habitat area use by salmonids, measures of the benefits to salmonids that use those areas, and measures of the benefits from the effects of these areas on habitats in the main stem river that are encountered by all outmigrating salmon and trout.

1.5 Report Contents and Organization

Formal annual reports were submitted for the 2009 and 2010 project years (Diefenderfer et al. 2010, 2011). In this interim project year, the Corps has requested that a brief summary of key findings and activities be submitted in lieu of a formal report for project study code EST-P-09-1, Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary. At the conclusion of the project in 2013, a formal report covering multi-year activities 2009–2012 will be submitted and will include well-developed chapters and technical appendices describing all research conducted for the study. The 2013 final project report will be suitable for regional review. This report summarizing key findings is organized around the three primary research topic areas and their integration; the organization is modeled after Chapter 3.0, “Key Results” of Diefenderfer et al. (2011). The appendix to this report contains five technical memoranda that were delivered to the Corps for interim evaluations during the project year.
2.0 Methods and Results

Key findings of research activities conducted during the 2011 project year are presented in a succinct format in this section. Findings from habitat connectivity research include developments in site-scale wetted area modeling (Section 2.1) and computer-assisted dike layer extraction (Section 2.2). Key results of early life history diversity research include a retrospective analysis, further development of the index, sensitivity testing and peer review (Section 2.3). Research in the survival benefits area included literature reviews in physiology (Section 2.4) and species-habitat modeling (Section 2.5). Integration occurred through a conceptual modeling effort focused on juvenile salmon-habitat relationships relative to estuarine habitat restoration (Section 2.6). The summary of each key finding includes the problem statement and background, research objectives, methods and key results of the research.

2.1 Site Area Modeling for Restoration Project Planning

Prepared by Andre Coleman

2.1.1 Problem Statement and Background

Restoration project proponents need to be able to measure area affected by the project prior to submitting ERTG Project Templates. However, the relevance of key hydrologic indicators of area to ecological response, particularly benefit to salmon, has not been conclusively determined. Thus, of the many ways to define area, none is known to be most useful for planning. In addition, the relevance of key hydrological area measurements may be different in portions of the LCRE dominated by fluvial, rather than tidal influences.

2.1.2 Research Objectives

The objectives of the research were to develop and disseminate a geographic information system (GIS)-based model to predict the inundation of restoration project sites by integrating topographic and hydrologic data. The model should be cost-effective and suitable for preliminary screening of restoration alternatives to assist planners in prioritizing which sites to restore. The model is not intended to substitute for a hydrodynamic model in final project engineering.

2.1.3 Methods

The PNNL-developed, Area-Time Inundation Index Model (ATIIM), is designed to address the need for rapid site assessment and characterization within an estuarine environment. This model was originally developed as part of the Corps-sponsored “Cumulative Effects” study (EST-P-02-04) and more recently was further developed through the Salmon Benefits study. It has appeared in the peer-reviewed literature as well as project annual reports (Diefenderfer et al. 2008; Thom et al. 2011b; Coleman et al. in preparation). ATIIM integrates 1) advanced terrain processing of Light Detection and Ranging (LiDAR) elevation data; 2) in situ, modeled, or synthesized hourly water surface elevation data; and 3) a wetted area algorithm to determine two- and three-dimensional inundation extent and a series of landscape and structural site metrics.
2.1.4 Key Results

ATIIM produces three types of data output: 1) spatial data including raster and vector representations of the site under different flow states and restoration designs (Table 2.1); 2) tabular data providing site characteristics and metrics (Table 2.2); and 3) graphed data derived from the analysis and post-processing of the spatial data (Coleman et al. in preparation).

Table 2.1. Spatial data output from the ATIIM model.

1.	Processed and merged LiDAR and bathymetry data with channel enforcement (where LiDAR elevation was missing due to standing water at the time of data collection)
2.	Microtopographic flow accumulation
3.	Microtopographic flow direction for channel routing
4.	Microtopographic channel network
5.	Flow path length
6.	Horizontal and vertical distance to channel
7.	Site drainage boundary and sub-basins within primary site
8.	Data series of two-dimensional wetted area inundation polygons at 10-cm increments through the min/max range of water surface elevation record
9.	Data series of three-dimensional volumetric area inundation at 10-cm increments through the min/max range of water surface elevation record (provides basis for calculating nutrient fluxes in the tidal exchange)
10.	Raster-based normalized frequency of inundation
11.	Raster-based Topographic Roughness Index (index can be used as a metric for restoration progress and habitat opportunity)
12.	Raster-based Topographic Wetness Index (index can be used to determine high soil-saturation zones and existing/potential restoration wetlands based on natural topography)

Table 2.2. Tabular data output produced by the ATIIM model.

Total Time-Steps	The total number of hourly time-steps used in the analysis. This value is based on the length of record available from observed water surface elevations.
Days Verification	Number of days used in the analysis
Auto-Determined Site Bankfull Elevation	Using an automated graph-based slope-change algorithm, the site average bankfull elevation is determined.
Time-steps < Inundation Elevation of X	The number of time-steps where water exists below the bankfull elevation (X).
Time-steps >= Inundation Elevation of X	The number of time-steps where water exists at or above the bankfull elevation (X).
Percent Time of Overbank Inundation	The percent time (from the total time-series) where water is at or above the bankfull elevation.
Total Site Area	The total drainage area of the site in square feet.
Total Area-Hectares	Total drainage area of the site measured in hectares.
Total Hectare Hours	The total number of hectares inundated at each time-step through the study period. Evaluation of inundation is occurring at every 10 cm of elevation.
Table 2.2. (contd)

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hectare Hours < X</td>
<td>The number of hectare-hours below the bankfull elevation (X).</td>
</tr>
<tr>
<td>Percent Hectare Hours < X</td>
<td>The percent (from the total time-series) of hectare-hours below the bankfull elevation.</td>
</tr>
<tr>
<td>Hectare Hours >= X</td>
<td>The number of hectare-hours at or above the bankfull elevation (X).</td>
</tr>
<tr>
<td>Percent Hectare Hours >= X</td>
<td>The percent (from the total time-series) of hectare-hours at or above the bankfull elevation.</td>
</tr>
<tr>
<td>Maximum Possible Hectare Hour Inundation</td>
<td>The theoretical maximum hectare-hour value at the site, basically assuming the entire site is inundated for the entire time-series.</td>
</tr>
<tr>
<td>Percent Time Inundation for Site Comparison</td>
<td>The percent time inundation, or area-time inundation index, is calculated as the actual number of hectare-hours of inundation, including both in-channel and floodplain area, summed at 10-cm increments of elevation, and divided by the theoretical maximum hectare-hours for the site.</td>
</tr>
<tr>
<td>Time Volume Inundation Index</td>
<td>The percent time of volumetric inundation is calculated as the actual volume of water, including both in-channel and floodplain area, summed at 10-cm increments of elevation, and divided by the theoretical maximum acre-feet-hours for the site.</td>
</tr>
<tr>
<td>Surface Area to Volume Ratio</td>
<td>Ratio of the planimetric surface area to the three-dimensional volume at each 10-cm increment of elevation.</td>
</tr>
<tr>
<td>Maximum Water Surface Elevation Frequency (MFWSE)</td>
<td>Most frequently observed water surface elevation in the period of record.</td>
</tr>
<tr>
<td>Habitat Opportunity</td>
<td>Data-series of channel-edge length based habitat availability at 10-cm increment of elevation.</td>
</tr>
<tr>
<td>Percent Habitat Opportunity</td>
<td>Data-series of percent habitat availability at each 10-cm increment divided by the total possible habitat availability.</td>
</tr>
<tr>
<td>Habitat Opportunity at MFWSE</td>
<td>The habitat opportunity percentage and length at the most frequently observed water surface elevation in the period of record.</td>
</tr>
<tr>
<td>Water Surface Elevation (WSE) Percent Frequency at Bankfull Elevation</td>
<td>WSE frequencies greater than or equal the mean bankfull elevation provides an indicator of the potential frequency that fish could access the marsh edge for feeding.</td>
</tr>
<tr>
<td>Total Site Channel Density</td>
<td>Stream channel length per unit area calculated by dividing the total center-of-channel length at the site by the total site area.</td>
</tr>
<tr>
<td>Inundated Channel Density</td>
<td>Stream channel length per unit area calculated at each 10-cm increment of elevation providing a measure of density in the aquatic/terrestrial interface over varying tidal/flow levels.</td>
</tr>
<tr>
<td>Inundation Perimeter</td>
<td>Data series of the total perimeter length of inundated area at each 10-cm increment in the WSE data record. This measure of the aquatic-terrestrial interface provides information about site characteristics and the potential for habitat opportunity and nutrient/biomass flux.</td>
</tr>
<tr>
<td>Inundation Perimeter at MFWSE</td>
<td>The inundation perimeter length at the most frequently observed water surface elevation in the period of record.</td>
</tr>
</tbody>
</table>
Table 2.2. (contd)

<table>
<thead>
<tr>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation-Area Relationship (Hypsometric Curve)</td>
<td>Quick assessment metric of the landform shape at a site, opportunity for inundation, and habitat opportunity.</td>
</tr>
<tr>
<td>Site Mean Topographic Roughness Index</td>
<td>See description Table 2.1.</td>
</tr>
<tr>
<td>Site Standard Deviation Roughness Index</td>
<td>See description Table 2.1.</td>
</tr>
<tr>
<td>Site Mean Topographic Wetness Index</td>
<td>See description Table 2.1.</td>
</tr>
<tr>
<td>Site Standard Deviation Wetness Index</td>
<td>See description Table 2.1.</td>
</tr>
</tbody>
</table>

2.2 Computer-Assisted Dike Layer Extraction

Prepared by Jerry Tagestad and Yinghai Ke

2.2.1 Problem Statement and Background

A comprehensive GIS layer of dikes in the LCRE floodplain is widely recognized as an essential missing tool for habitat connectivity assessments or indices.

2.2.2 Research Objectives

This research supported an effort by the Oregon Department of Land Conservation and Development, the National Oceanic and Atmospheric Administration (NOAA), the Lower Columbia River Estuary Partnership (LCREP) and Bonneville Power Administration (BPA) to produce a dike layer, by developing and delivering a computer-assisted extraction of dikes in the region. Our 2011 analysis of the outputs of manual delineation methods identified the following potential gaps, which could in part be addressed by including a LiDAR data feature extraction in the process: structures that appear to be dikes may be omitted; the delineated length of breached dikes may underestimate the length of breached dike visible in the LiDAR data; non-dike structures that may or may not restrict flow (i.e., railroads, roads, etc.) appear in the LiDAR data, but are not delineated in the sample dike inventory; and space between some elevated structures may be erroneously delineated as connected structures. This research is critical because instances of omission, mis-delineation or mis-classification in a dike inventory can compromise a passage barrier assessment, potentially resulting in gross over- or under-estimation of passage barrier presence and length in the LCRE. A combination of manual and semi-automated techniques has the potential to produce a superior layer.

2.2.3 Methods

PNNL staff created a dike layer using computer-assisted feature extraction techniques and 1-m LiDAR elevation data. Dikes are generally conspicuous in high-resolution LiDAR data as flat-topped, linear features with steeply sloping sides. The extraction methodology relied on feature extraction software, Feature Analyst 4.2, from Overwatch Systems in the ArcGIS work environment. Feature
analyst workflow requires the user to identify examples of the feature of interest, adjust extraction settings, and (optionally) refine initial results by identifying correct and incorrect extractions. For each LiDAR tile, the analyst delineated 4 to 8 dike segments 30 to 100 m in length, taking care to distribute examples over dikes of varying width and height. Because dikes exhibit unique cross-sectional characteristics (generally steeply sloped on both sides and flat on the top), slope data, derived from the LiDAR data, were used in the extraction along with the LiDAR elevation data.

In some instances where the initial Feature Analyst results for a tile were extremely cluttered, Feature Analyst Hierarchical Learning was run to improve the results. Once the results were sufficiently complete, polygons were rasterized on the score attribute. In general, the features with higher scores better match the characteristics of training data. To further refine the results, with more control than is afforded by the Feature Analyst workflow, a cleanup model was created in ERDAS Imagine. The cleanup model compared each candidate dike pixel to a score criterion, slope criteria, and elevation above the mean-high high water level.

To smooth results, the retained pixels were then subjected to a Dilate-Erode process and clumps smaller than 35 pixels were removed from the layer. The smoothed, cleaned candidate pixels were converted to polygon and skeletonized to a line using Feature Analyst post-processing function “Polygon to Line.” Some dangles remained as an artifact of the skeletonization process. These were removed using ArcGIS Ver. 10 command “Trim” with a threshold of 75 m. Finally to remove excess vertices, dike lines were generalized using the Arc10 “Generalize” function with a 5-m tolerance.

2.2.4 Key Results

The PNNL-developed prototype, rapid extraction, dike mapping for the estuary (Figure 2.1) was delivered to the LCREP team in November 2011. These data were derived from LiDAR data via a computer-assisted, GIS approach and are intended to provide an independently derived layer to be refined by a human analyst.

![Figure 2.1. Estuary-wide view of the extraction results (in blue) compared to existing dike layer (in red)
2.3 Early Life History Diversity Index

Prepared by Gary Johnson and Nikki Sather

2.3.1 Problem Statement and Background

The 2008 FCRPS BiOp called for the Action Agencies (primarily BPA and USACE) to develop an index of life history diversity for juvenile salmon in the LCRE (NMFS 2008, Reasonable and Prudent Alternative 58.2). In previous work, we reviewed literature and developed and tested a binary approach based on the presence/absence of juvenile salmon of various size classes over various time periods and habitats (Diefenderfer et al. 2010, 2011). The binary approach, however, did not incorporate fish density, a key variable in life history diversity, and there could be more to learn from application of the ELHD index to past data sets.

2.3.2 Research Objectives

1. Perform a retrospective analysis of historic juvenile fish catch data to assess multi-decadal trends in the binary ELHD index.
2. Develop an ELHD index that incorporates fish density.
3. Test the new ELHD index.
4. Solicit peer review of the ELHD index in general.

2.3.3 Methods

1. Retrospective Analysis – Endeavored to extract empirical data including catch data from historical reports and assessed the applicability of the available data.
2. Index Development – Revisited the literature on existing diversity indices.
3. Test – Performed a case study applying a modified Shannon index using the beach seine catch data from Cottonwood Island during 2010 for three habitat types over 10 months (Diefenderfer et al. 2011).
4. Peer-Review – Solicited review and comments from Dr. Roy Kropp, MSL ecologist, on the index-based approach for quantifying ELHD of juvenile salmon.

2.3.4 Key Results

Retrospective Analysis – The application of the ELHD index to other data sets in LCRE was unsuccessful. We intended to examine multi-decadal trends in early life history diversity using a retrospective analysis of data from others over the past 30 years, but the analysis was not possible because the appropriate data were not available or data simply were not physically available. Appropriate in this case meant the data included fish sizes and frequency distribution, and sampling was periodic over several years. We used catch data from Jones Beach (Dawley et al. 1986) in the 2010 report (Diefenderfer et al. 2011), but other data were not available or amenable to analysis given our methodologies.

Index Development – To incorporate salmon density into the ELHD index, we modified Shannon’s diversity index using the proportion of individuals in salmon size classes instead of species.
where, \(p_i \) is the fraction of individuals belonging to the i-th species, or, in the case of ELHD for Chinook salmon, the fraction of total density belonging to the i-th size class. The size classes, derived from catch data (Sather et al. 2011), were <50 mm, 51–90 mm, 91–120 mm, >120 mm.

Test – The index test using Cottonwood Island catch data shows the sensitivity of the Shannon diversity index to evenness (see Figure 2.2 and Table 2.3). This approach for salmon ELHD requires further investigation.

![Figure 2.2](image)
Figure 2.2. Early life history diversity index, April–December.

<table>
<thead>
<tr>
<th>Month</th>
<th><50</th>
<th>51-90</th>
<th>91-120</th>
<th>>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>3894</td>
<td>701</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>May</td>
<td>706</td>
<td>1195</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>June</td>
<td>196</td>
<td>1089</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>July</td>
<td>1</td>
<td>214</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>October</td>
<td>0</td>
<td>2</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>November</td>
<td>0</td>
<td>29</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>December</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

A comparison of ELHD index values among three habitat types at Cottonwood Island revealed a serious drawback in applying the ELHD index as an indicator of the relative importance of habitat types to juvenile salmon. Namely, the index value relied on the presence of multiple size classes sampled at a given site; this implied direct habitat use does not reflect indirect benefits of habitats to fish such as prey and nutrient export. The occurrence of various size classes of fish within the estuary or a given habitat may reflect trends in population attributes, but the subsequent index values generated as a result of catch data should not be used to evaluate ecological benefits between sites and habitat types.
Peer-Review – Dr. Kropp’s review comments included, “Regardless of the metrics, as long as there is not a biological rationale for them, you will not truly be able to understand and evaluate the effects of the restoration efforts on the system… You need to have a defined way of determining when values differ versus when they don’t. This should be based on biology, not math… The farther the index value travels from scientist to management, and probably eventually to the public, the more likely it will be that the underlying data get lost. Once those data are lost, explanatory power and understanding are gone.” We agree with these comments and intend to incorporate them into present and future work. Examples include clarifying the attributes associated with how the ELHD index is calculated and its subsequent intended use for management applications. Furthermore, we continue to make refinements with regard to coupling biotic information into a condensed and quantitative format.

2.4 Physiology Literature Review

Prepared by Christa Woodley

2.4.1 Problem Statement

Many existing physiological methods for measuring benefits to juvenile salmon of habitat restoration are variable with life stage and time of year, and thus are not reliable indicators of habitat quality. New approaches are needed to measure and evaluate habitat restoration benefits on juvenile salmon.

2.4.2 Research Objectives

1. Evaluate the applicability of common physiological measures to use for assessing the benefits to juvenile salmon from restoration in estuaries.

2. Assess the use of fish growth measures as an indicator of fish response to habitat restoration.

3. Recommend the best measures to pursue in future research on indexing habitat benefits.

2.4.3 Methods

We examined over 30 years of peer-reviewed literature pertaining to juvenile salmon physiological measures, both common and novel, used in fisheries to monitor growth, condition, populations, and habitat-provided benefits. This involved about 250 journal articles and reports.

2.4.4 Key Results

We identified characteristics or factors related to working in the LCRE with juvenile salmon that helped to determine the appropriateness of reviewed physiological measures. Measures should pertain to parr, smolting, and smolted juvenile salmon; be quantifiable and repeatable on several biological levels (cellular through population); have low variability among individuals, be easily monitored across space and time; have fine-scale temporal resolution; not require recapture for serial sampling; not be confounded by other physiological processes; and be responsive to habitat conditions.

1 Katie Wagner, Amanda Bryson, Nichole Sather, and Gary Johnson contributed to this review.
The neuro-endocrine-based measures we reviewed are not appropriate measures of restoration benefits unless one understands seasonal/photoperiod, habitat or environmental quality, genetic differences (e.g., run or stream origination), life stage, and baseline along with strict adherence to capture and collection protocol to limit experimental variability. This makes them difficult to use as habitat-related responses by juvenile salmon in the LCRE.

Somatic growth is dependent upon food intake and composition as well physiological processes, such as assimilation of nutrients. The best growth measures to pursue for the purpose of indexing habitat benefits are related to tissue synthesis and degradation. This is because they indicate actual tissue synthesis, are not easily confounded by stressors like handling, are responsive to habitat conditions including prey accessibility and water quality, and have low statistical variability.

2.5 Species-Habitat Modeling Literature Review

Prepared by Kate Buenau

2.5.1 Problem Statement

As part of developing a numerical model to link the restoration of estuarine habitat to survival benefits for juvenile salmonids, we need to understand existing types of species-habitat models and how they are used. The development of species-habitat models includes several types of modeling approaches with a range of terminology and definitions. Because terms have not always been used consistently, they create challenges in communicating and understanding the key differences between models and choices to be made while developing one.

2.5.2 Research Objective

This research sought to explain terms and concepts relevant to modeling the relationships between habitat characteristics and species distribution in order to provide a common vocabulary for discussing such models, and to explain the use and capabilities of the primary approaches (statistical vs. mechanistic) in species-habitat modeling.

2.5.3 Methods

We reviewed literature that explained the types of species-habitat models available and their development, including critiques of major modeling approaches. We summarized the key dichotomy between statistical and mechanistic species-habitat models.

2.5.4 Key Results

The U.S. Fish and Wildlife Service (USFWS) originally defined habitat suitability index (HSI) models broadly as a means of relating measurable habitat characteristics (physical, chemical, biological) to the carrying capacity of a species (USFWS 1981). The USFWS suggested several approaches to model development, including mechanistic and statistical models and expert opinion. In practice, most HSI models developed under these guidelines use a combination of literature references on habitat suitability and expert opinion. A major criticism of these HSIs is that they generally do not include estimates of uncertainty. This deficiency and a general lack of data and funding mean few HSI models have been
Another modeling approach, resource selection functions (RSFs), statistically relates species presence to habitat characteristics via multiple regression. These models inherently include estimates of uncertainty and can be validated, but the data needs are intensive. The limited ability to extrapolate results beyond the conditions in which data were collected constrains the utility and interpretation of these models.

Other terms for species habitat models have been used ambiguously: the phrase “Habitat Suitability Model” is sometimes used to refer to HSI models and sometimes to RSF models, often with different usage within and outside of the United States. “Species Distribution Model” (SDM) is a broad term that can include models such as those described above or others, such as large-scale models of species distribution relative to climate change.

Two primary approaches to modeling species-habitat relationships are mechanistic and statistical models. Mechanistic models focus on the physiological relationships between organisms and characteristics of the environment, explaining why a species can live where it does. Statistical models (such as RSF models) need not explain why a species occupies a location, only describe the characteristics of sites where the species is present. A well-constructed, statistical SDM would thoroughly describe the habitat where species were observed at a given time; whereas a well-constructed mechanistic SDM would describe the extent of where species could live given their physiological requirements. Both approaches have strengths and limitations; some recent research provides suggestions for combining aspects of both.

2.6 Conceptual Model of the Benefits of Estuarine Habitat Restoration for Juvenile Salmon

Prepared by Kate Buenau

With contributions to the conceptual model made by PNNL staff Lara Aston, Amy Borde, Jill Brandenberger, Heida Diefenderfer, Erin Donley, Gary Johnson, Roy Kropp, Nikki Sather, Ron Thom, Christa Woodley, and Dana Woodruff

2.6.1 Problem Statement

Developing a numerical model for juvenile salmon survival benefits gained from estuarine habitat restoration requires the establishment of a conceptual model basis, prioritization of components to include, and collection of specific information for use in the model.

2.6.2 Research Objectives

1. To develop the conceptual basis for a numerical model of habitat units for juvenile salmon present in estuarine habitats by identifying key components of the linkages between the physical habitat, biotic community, and salmon population processes.

2. To collect and consolidate information about these components, including literature and expertise held by researchers at PNNL.
2.6.3 Methods

A group of 10 MSL researchers met to identify key components and linkages to include in the conceptual model. After developing and refining the conceptual model diagram, team members collected key literature and wrote summaries for their subject areas of expertise explaining the significance of model components and relationships.

2.6.4 Key Results

At the highest level, we have organized the model into three tiers—physical, biotic, and salmon—reflecting our goal of relating alterations to the hydrogeologic environment to salmon density and survival through both the direct effects of the physical environment and indirect effects mediated by the biotic community (Figure 2.3).

We grouped components of the physical tier into three categories: hydrogeologic, water, and soil and sediment profile. The hydrogeologic environment includes the physical structure and hydrodynamics of a site. It is the model component directly affected by hydrological reconnection and must pass on the effects to other model components for restoration to be successful. The water category includes water properties such as temperature, dissolved oxygen, and turbidity. The third physical category is the soil and sediment profile, including structure and composition. These physical categories interact with each other, influence the biotic community at the site, and in some cases directly affect salmon (e.g., wetted area, water properties).

The biotic community consists of primary producers, both macro- and microscopic, whose composition and abundance are determined by the physical environment. The microbial loop connects the biotic community and physical environment through the breakdown of detritus and organic material. The prey category includes the invertebrate taxa, whose food web is based upon the primary producers and microbial loop, and which are themselves food sources for juvenile salmon.

The salmon tier of the model includes states and processes that link salmon survival and density to the biotic and physical environment. Biotic interactions directly affect juvenile salmon health or survival. Salmon behavior includes predator avoidance, foraging, and residence time at a site and is affected by prey availability, water quality, and the hydrogeologic environment. Key to linking all these factors are the physiological responses of salmon to their physical environment, namely the stress response and growth, which respond to many other components, interact with each other, and drive salmon density and survival.

The full conceptual model shown here applies to the effects of hydrological reconnection on juvenile salmon which have some physical presence at a reconnected site. A subset of the relationships shown also applies to cases where salmon do not enter the site, but benefit from resources exported from the site in the form of detritus and prey. In such cases, the direct connections between the physical tier and salmon and the feedback from salmon to the biotic component would not apply. Rather, the links between the physical tier through prey, as mediated by flow, would benefit fish through the exported benefits of hydrological reconnection.
Figure 2.3. Preliminary conceptual model of direct and indirect juvenile salmon survival benefits from habitat restoration in the lower Columbia River and estuary.
3.0 Management Implications and Recommendations

The facets of this research, while originally brought together in this project to address three individual gaps in BiOp coverage, can be theoretically integrated through the conceptual model (Figure 2.3). Habitat connectivity, as an example, is primarily controlled by the hydrogeologic environment area of the model. Early life history diversity can be both a behavioral response to environmental conditions and a population response over longer time frames.

3.1 Management Implications

3.1.1 Habitat Connectivity

The ATIIM can produce numerous hydrologic metrics that describe different aspects of site area (e.g., maximum frequency wetted channel area versus maximum floodplain area inundated), as detailed in the appendix to this report. Hydrologic process metrics such as inundation frequency and duration can inform the evaluation of proposed restoration sites, e.g., determine trade-offs between water-surface elevation and habitat opportunity, compare alternative restoration designs, predict impacts of altered flow regimes, and understand nutrient and biomass fluxes. In an adaptive management framework, this model can be used for effectiveness monitoring of changes in the developmental trajectories of restoration sites and to provide standardized site comparisons.

3.1.2 Early Life History Diversity

A high-level indicator of early life history diversity is under development that can be used to track progress in the CEERP conducted by the Action Agencies. The premise is that increased life history diversity will lead to increased population resilience and recovery. As it has evolved, the creation of an ELHD index has proven to be a challenging endeavor. Efforts have been made to capture the key elements associated with the complex nature of the data, but efforts have not fully transitioned from development phase, and the utility of this evaluation tool has yet to be determined.

3.1.3 Survival Benefits

The species-habitat literature review explains the type of modeling approaches and the language used to describe them, providing a basis for discussion of models used to achieve specific goals. It summarizes the strengths, weaknesses, data needs, and applications of different model types to help guide the development of habitat unit models according to their goals, requirements, and the types of information available.

The conceptual model identifies key components of the relationship between the physical habitat that juvenile salmon may use and salmon growth and survival, including intermediate physical and biotic components that connect restoration actions to the response of salmon benefiting from the restoration at that site. The conceptual model combines literature review, input from multiple projects, and the knowledge of subject matter experts and provides newer research and information than previously developed conceptual models. The conceptual model as currently developed is directed at the scale of sites affected by hydrologic reconnection. It also includes information on data availability, both conceptual and numerical and whether data are available for the LCRE or only for other regions. In doing so, it identifies data gaps overall or for the LCRE specifically and can therefore be used to guide further research.
3.2 Recommendations

3.2.1 Habitat Connectivity

Under the “habitat connectivity” objective of the Corps-sponsored “Salmon Benefits” project (study code EST-P-09-1), the proposal for 2012 work addresses the need to make the above-described model available to project proponents. This will be accomplished by creating an easy-to-use ArcGIS extension of the ATIIM. The extension and accompanying user’s manual would be housed in the ESRI ArcGIS Resource Center available for free public download. Suitable water level inputs to the ArcGIS extension would be provided by field-collected time-series pressure data (e.g., from a HOBO level logger), nearby tide gage, hydrodynamic models such as the Corps’ Adaptive Hydraulics Model or the U.S. Geological Survey Delft 3-D model, or through the input of a synthetic time-series of water surface elevations if the user is interested in running hypothetical scenarios. Additional data requirements to run the tool would be only topographic data and bathymetric data; e.g., the terrain model of the LCRE released by the Corps in 2010. This tool would permit project proponents with commonly available GIS capabilities to predict metrics such as maximum inundated area, maximum frequency inundated area, water volume fluxes, and habitat opportunity for use in restoration project planning. With guidance from the ERTG and the Action Agencies on a reference elevation, e.g., 2-year flood, a standard measurement method and application tool would be available to restoration practitioners to use for the wetted-area measurement in project templates of the ERTG review process.

3.2.2 Early Life History Diversity

The Shannon ELHD index could be refined by adding dimensions such as time and genetic stock. Approaches to ELHD based on statistical uniformity could be investigated, and ramifications of resolution of the data further discussed. It may also be useful to consider integration of catch data from multiple gear types from various studies, e.g., shallow-water beach seines and main channel purse seines. Finally, the findings and development of the ELHD index work from 2009 through 2012 should be synthesized to make final recommendations for an ELHD index and its applicability.

3.2.3 Survival Benefits

In physiology research, determine on a species-specific basis the relationship between fish tissue synthesis/degradation and habitat conditions as reflected in various levels of quality and quantity of food. This will require a formal experimental design and laboratory/field research. The strongest inference of survival benefits in the LCRE, however, will be gained by using multiple measurement methods, including site or reach specifics with fish condition and telemetry in a single index. This research is critical to meaningful evaluation of the effectiveness of habitat restoration actions in the CEERP.

From the species-habitat literature review, we recommend that the approach to habitat unit modeling for juvenile salmon in the LCRE be primarily mechanistic, due to the nature of data available on the use of habitat by salmon and the goal of modeling changes to growth and survival rather than simply presence/absence. Statistical analysis of existing data sets may still be useful for parameterizing aspects of a mechanistic model. Based upon the literature on the application of species-habitat models, we recommend that estimates of uncertainty be explicitly included in all aspects of the model to allow for the rigorous application and any future testing or validation of the model.
The next steps for the use of the conceptual model are the prioritization of elements for inclusion in a numerical salmon-habitat model and the formal gathering of quantitative relationships and parameters for use in a numerical model, using sources identified during the course of conceptual model development. During this process aspects of the conceptual model may be identified for additional or more in-depth research, either through further literature surveys or as suggestions for future empirical study.

3.3 Relevance to the 2008 Biological Opinion on FCRPS Operations

This investigation has implications relevant to the entire adaptive management cycle of the CEERP (Thom et al. 2011a). The corollary to establishing our ability to measure habitat restoration benefits upon project completion is developing the ability to predict habitat restoration benefits during the Corps’ ecosystem restoration planning process. Therefore, the project addresses BiOp RPA Actions 2 and 3, 36 and 37, and 58, 59, and 60 (NMFS 2008; 2010). The following RPA subactions are specifically addressed:

- **RPA 58.2** – develop an index and monitor and evaluate the life history diversity of salmonid populations at representative locations in the estuary
- **RPA 59.3** – develop an index of habitat connectivity and apply it to each of the eight reaches of the study area
- **RPA 60.3** – evaluate the effects of selected individual habitat restoration actions at project sites relative to reference sites and evaluate post-restoration trajectories based on project-specific goals and objectives.

In addition, the region, i.e., Action Agencies, NOAA Fisheries, resource management agencies, and the research community will use action effectiveness data from restoration projects to assess how well the habitat actions are working as called for in the BiOp, the Northwest Power and Conservation Council’s Fish and Wildlife Program, and recovery plans for salmonid populations listed under the ESA. The Action Agencies will submit to NOAA Fisheries, Annual Progress Reports in September each year except 2013 and 2016; in these 2 years, comprehensive evaluations of multi-year implementation activities are due by the end of June.

1 The Action Agencies comprise the Corps, BPA, and the Bureau of Reclamation.
4.0 References

Campbell LA. 2010. Life Histories of Juvenile Chinook Salmon (Oncorhynchus tshawytscha) in the Columbia River Estuary as Inferred from Scale and Otolith Microchemistry. MS Thesis, Oregon State University, Corvallis, Oregon.

Appendix

Technical Memoranda
Appendix

Technical Memoranda

Date: 7/8/2011 Project No.: 46201; 55945
To: Blaine D. Ebberts, USACE Internal Distribution: • Ron M. Thom, Principal Investigator, Cumulative Effects Project;
From: André M. Coleman, Hydrologist • Heida L. Diefenderfer, Principal Investigator, Salmon Benefits Project
Subject: Site Area Modeling for Restoration Project Planning in the Lower Columbia River and Estuary

Problem Statement

Restoration project proponents need to be able to measure area affected by the project prior to submitting Expert Regional Technical Group (ERTG) Project Templates. However, the relevance of key hydrologic indicators of area to ecological response, particularly benefit to salmon, has not been conclusively determined. Thus, of the many ways to define area, none is known to be most useful for planning. In addition, the relevance of key hydrological area measurements may be different in portions of the lower Columbia River and estuary dominated by fluvial, rather than by tidal influences.

Background

The Pacific Northwest National Laboratory (PNNL)-developed Area-Time Inundation Index Model (ATIIM) is designed to address the need for rapid site assessment and characterization within an estuarine environment. This model was developed as part of the Corps of Engineers-sponsored “Cumulative Effects” project (EST-P-02-04) and has appeared in the peer-reviewed literature as well as project annual reports (Diefenderfer et al. 2008; Thom et al. 2011; Coleman et al. in preparation). ATIIM integrates 1) advanced terrain processing of Light Detection and Ranging (LiDAR) elevation data; 2) in situ, modeled, or synthesized hourly water surface elevation data; and 3) a wetted area algorithm to determine two- and three-dimensional inundation extent and a series of landscape and structural site metrics. The ATIIM can produce numerous hydrologic metrics that describe different aspects of site area (e.g., maximum frequency wetted channel area versus maximum floodplain area inundated), as detailed in the ensuing sections of this memorandum. Hydrologic process metrics such as inundation frequency and duration can inform evaluation of proposed restoration sites; e.g., determine trade-offs between water-surface elevation and habitat opportunity, compare alternative restoration designs, predict impacts of altered flow regimes, and understand nutrient and biomass fluxes. In an adaptive management framework, this model can be used for effectiveness monitoring of changes in the developmental trajectories of restoration sites and to provide standardized site comparisons.

Proposed Solution

Under the “habitat connectivity” objective of the Corps of Engineers-sponsored “Salmon Benefits” project (study code EST-P-09-1), the preliminary proposal for 2012 work addresses the need to make the
above-described model available to project proponents. This will be accomplished by creating an easy-to-use ArcGIS extension of the ATIIM. The extension and accompanying user’s manual would be housed in the ESRI ArcGIS Resource Center available for free public download. Suitable water level inputs to the ArcGIS extension would be provided by field-collected time-series pressure data (e.g., from a HOBO level logger), nearby tide gage, hydrodynamic models such as the Corps’ Adaptive Hydraulics Model or the USGS Delft 3-D model, or through the input of a synthetic time-series of water surface elevations if the user is interested in running hypothetical scenarios. Additional data requirements to run the tool would be only topographic data and bathymetric data, e.g. the terrain model of the lower Columbia River and estuary released by the Corps of Engineers in 2010. This tool would permit project proponents with commonly available GIS capabilities to predict metrics such as maximum inundated area, maximum frequency inundated area, water volume fluxes, and habitat opportunity for use in restoration project planning. With guidance from the ERTG and the Action Agencies on a reference elevation, e.g., 2-year flood, a standard measurement method and application tool would be available to restoration practitioners to use for the wetted-area measurement in project templates of the ERTG review process.

Area-Time Inundation Index Metrics & Definitions:

Three types of data output are produced by ATIIM: 1) spatial data including raster and vector representations of the site under different flow states and restoration designs; 2) data tabular data providing site characteristics and metrics; and 3) graph data derived from the analysis and post-processing of the spatial data. The standard output and metrics produced by ATIIM are described below.

Spatial Data

1. Processed and merged LiDAR and bathymetry data with channel enforcement (where LiDAR elevation is missing due to standing water at the time of data collection)
2. Microtopographic flow accumulation
3. Microtopographic flow direction for channel routing
4. Microtopographic channel network
5. Flow path length
6. Horizontal and vertical distance to channel
7. Site drainage boundary and sub-basins within primary site
8. Data series of two-dimensional wetted area inundation polygons at 10-cm increments through the min/max range of water surface elevation record
9. Data series of three-dimensional volumetric area inundation at 10-cm increments through the min/max range of water surface elevation record (provides basis for calculating nutrient fluxes in the tidal exchange)
10. Raster-based normalized frequency of inundation
11. Raster-based Topographic Roughness Index (index can be used as a metric for restoration progress and habitat opportunity)
12. Raster-based Topographic Wetness Index (index can be used to determine high soil-saturation zones and existing/potential restoration wetlands based on natural topography).

Tabular Data: Site Characteristics and Metrics

Total Time-Steps: The total number of hourly time-steps used in the analysis. This value is based on the length of record available from observed water surface elevations.

Days Verification: Number of days used in the analysis.

Auto-Determined Site Bankfull Elevation: Using an automated graph-based slope-change algorithm, the site average bankfull elevation is determined.

Time-Steps < Inundation Elevation of X: The number of time-steps where water exists below the bankfull elevation (X).

Time-Steps >= Inundation Elevation of X: The number of time-steps where water exists at or above the bankfull elevation (X).

Percent Time of Overbank Inundation: The percent time (from the total time-series) where water is at or above the bankfull elevation.

Total Site Area: The total drainage area of the site in square feet.

Total Area-Hectares: Total drainage area of the site measured in hectares.

Total Hectare Hours: The total number of hectares inundated at each time-step through the study period. Evaluation of inundation is occurring at every 10 cm of elevation.

Hectare Hours < X: The number of hectare-hours below the bankfull elevation (X).

Percent Hectare Hours < X: The percent (from the total time-series) of hectare-hours below the bankfull elevation.

Hectare Hours >= X: The number of hectare-hours at or above the bankfull elevation (X).

Percent Hectare Hours >= X: The percent (from the total time-series) of hectare-hours at or above the bankfull elevation.

Maximum Possible Hectare Hour Inundation: The theoretical maximum hectare-hour value at the site, basically assuming the entire site is inundated for the entire time-series.

Percent Time Inundation for Site Comparison: The percent time inundation, or area-time inundation index, is calculated as the actual number of hectare-hours of inundation, including both in-channel and floodplain area, summed at 10-cm increments of elevation, and divided by the theoretical maximum hectare-hours for the site.
Time Volume Inundation Index: The percent time of volumetric inundation is calculated as the actual volume of water, including both in-channel and floodplain area, summed at 10-cm increments of elevation, and divided by the theoretical maximum acre-feet-hours for the site.

Surface-Area to Volume Ratio: Ratio of the planimetric surface area to the three-dimensional volume at each 10-cm increment of elevation.

Maximum Water Surface Elevation Frequency (MFWSE): Most frequently observed water surface elevation in the period of record.

Habitat Opportunity: Data-series of channel-edge length-based habitat availability at 10-cm increment of elevation.

Percent Habitat Opportunity: Data-series of percent habitat availability at each 10-cm increment divided by the total possible habitat availability.

Habitat Opportunity at MFWSE: The habitat opportunity percentage and length at the most frequently observed water surface elevation in the period of record.

Water Surface Elevation (WSE) Percent Frequency at Bankfull Elevation: WSE frequencies greater than or equal the mean bankfull elevation provide an indicator of the potential frequency that fish could access the marsh edge for feeding.

Total Site Channel Density: Stream channel length per unit area calculated by dividing the total center-of-channel length at the site by the total site area.

Inundated Channel Density: Stream channel length per unit area calculated at each 10-cm increment of elevation providing a measure of density in the aquatic/terrestrial interface over varying tidal/flow levels.

Inundation Perimeter: Data series of the total perimeter length of inundated area at each 10-cm increment in the WSE data record. This measure of the aquatic-terrestrial interface provides information about site characteristics and the potential for habitat opportunity and nutrient/biomass flux.

Inundation Perimeter at MFWSE: The inundation perimeter length at the most frequently observed water surface elevation in the period of record.

Elevation-Area Relationship (Hypsometric Curve): Quick assessment metric of the landform shape at a site, opportunity for inundation, and habitat opportunity.

Site Mean Topographic Roughness Index: See description under Spatial Data.

Site Standard Deviation Roughness Index: See description under Spatial Data.

Site Mean Topographic Wetness Index: See description under Spatial Data.

Site Standard Deviation Wetness Index: See description under Spatial Data.

Graph Data
Graph data provided herein are excerpted from Chapter 2 of the final report of the Corps’ cumulative effects project (Thom et al. 2011).
Crims Island

Crims Reference

Kandoll Farm

Kandoll Reference

Vera Slough

Vera Reference

Vera Slough (detail)

Kandoll Farm (detail)

Topographic Ruggedness Index
Modified Topographic Wetness Index
Inundation perimeters at the paired reference (east) and restoration sites (west). The inundation perimeters are model derived and represent the most frequently occurring water surface elevation (yellow) and the maximum water surface elevation (green).
Kandoll Farm
Normalized Cumulative Inundation Frequency

References

This document defines terms and concepts relevant to modeling the relationships between habitat characteristics and species distributions. It highlights important distinctions between the terms and explains the capabilities of each described species-habitat model. This research was conducted for support of the U.S. Army Corps of Engineers, Columbia River Fish Mitigation Program, Salmon Benefits project.

Species-Habitat Modeling Terminology

Habitat Suitability Index (HSI) models are defined by the U.S. Fish and Wildlife Service (USFWS) as a means of relating measurable habitat characteristics (physical, chemical, biological) to the carrying capacity of a species (USFWS 1981).

The USFWS HSI framework suggests that habitat variables should be practical to measure and relate to “life requisites” such as food, cover, and reproduction. Variables are plotted against a suitability index that ranges from 0 to 1 for each variable, with a value of 1 being the most suitable and a value of 0 being unsuitable. The relationships for each variable can be determined through understanding of physiology or life history (mechanistic relationship, from field or lab studies or expert opinion), or based upon statistical models from empirical measurements. Indices for each variable are then aggregated via various methods: limiting factor, sums, means, weighted means, etc.

HSI models often do not include measures of uncertainty in habitat variables and HSI ratings. Uncertainty can be significant both for input data (habitat measurements) and model structure and suitability relationships. With only mean data it is generally not possible to determine whether HSI scores truly differ between sites or to validate models (Bender et al. 1996; Van der Lee et al. 2006). A lack of uncertainty estimates can imply a level of precision in the form and values of the functions that is not really there. This artificial precision is often amplified when suitability indices are aggregated (Van Horne and Wiens 1991).

There is a general lack of validation of HSI models, and existing validation has been inconsistent (Bender et al. 1996; Roloff and Kernohan 1999; Haxton et al. 2008). Despite use in management since the 1980s, HSI models have received limited research focus, signified by a lack of representation in peer-reviewed literature. Brooks (1997) suggests this is partly due to the difficulty of thoroughly validating a model to satisfy peer reviewers and suggests a multistep verification and validation process that may be more feasible. Most academic attention to habitat modeling appears to be focused on other approaches, either statistical (described next) or data-driven mechanistic models (e.g., bioenergetic models).
Resource Selection Function (RSF) models: RSF models are a particular type of habitat suitability model that is always estimated statistically, usually from presence/absence or presence/available data that are related to habitat characteristics through multiple regression (Boyce et al. 2002). They relate predictor variables (e.g., vegetation type, water depth) to the likelihood of a unit being used by an organism. The statistical nature of RSF models allows for rigor in model selection and parameterization, including estimates of uncertainty. Formal methods for validation have been developed, though data needs can be intensive. It can also be difficult or inappropriate to extrapolate results beyond the conditions (season, density, presence of other species, etc.) in which usage data are collected. Usage patterns can be affected by a number of factors other than habitat quality, including access and ecological interactions (McLoughlin et al. 2010), so they should be interpreted with caution, especially when used for prediction.

The next two terms have been used broadly and at times ambiguously. Their use can signify different modeling approaches depending on where and how they are used.

The term **Habitat Suitability Model (HSM)** is sometimes used to refer to HSI models in general and in other instances specifically to RSF models. It appears that “HSM” generally refers to HSI models in North America (Bender et al. 1996; Haxton et al. 2008), where the RSF terminology is used to distinguish statistics-only approaches from the USFWS approach. Outside of North America, HSM is sometimes used to specifically indicate an RSF model (Hirzel et al. 2006; Cianfrani et al. 2010; Lahoz-Monfort et al. 2010).

Species Distribution Model (SDM) is a label broadly applied to various types of habitat modeling, including those listed above as well as others such as niche modeling and climate envelope models. This category includes models focused on predicting species distributions over continental scales, especially for climate modeling, rather than suitability of sites. Elith and Leathwick (2009) review non-mechanistic SDM approaches.

Statistical vs. Mechanistic Species-Habitat Modeling Approaches

A key dichotomy in species distribution modeling is **statistical/correlative SDMs** vs. **mechanistic SDMs.** RSF models are statistical, as they relate species occurrence to landscape characteristics through regression models (Figure 1a). Statistical models are not required to explicitly define how those variables make habitat suitable; rather they need only establish correlations between conditions and species presence or use. In addition, explanatory variables in statistical models are not required to act directly upon the organism of interest, but may be proxies for other variables (e.g., water depth as an indicator of temperature range and light availability). In contrast, mechanistic SDMs focus directly on the physiological relationships between environmental factors and growth, survival, or reproduction, often through physiological models (e.g., energy or mass balance models, models relating growth to temperature) (Figure 1c). These models may be parameterized through experiments or specific physiological studies rather than data on species presence.
Figure 1. Statistical and mechanistic model example, from Kearney and Porter (2009). (a) Observations of species presence/absence are used to create a statistical relationship between air temperature and probability of observing that species. (c) In a mechanistic model the fitness of a species is related to body temperature through a physiological understanding of the organism. Environmental effects on body temperature would then be related, through this function, to survival and reproduction of the species under various conditions.

A well-constructed, **statistical** SDM would thoroughly describe the habitat where species *were observed* at a given time; whereas a well-constructed **mechanistic** SDM would describe the extent of where species *could live* given their physiological requirements. In other words, given enough information, a statistical model would describe the realized niche, while a mechanistic model would describe the fundamental niche. Statistical models may poorly characterize the effects of habitat quality on a species if the species distribution is heavily influenced by dispersal barriers or interactions with other species. In addition, the presence of individuals of a species in a habitat does not necessarily imply that the species can survive, grow, or reproduce there, or that a mobile species is not merely passing through. Conversely, mechanistic models may identify habitat as suitable that might be rarely if ever occupied by the species if they cannot colonize the habitat or coexist with other species already present. Both approaches must seek a balance between focusing on practically measurable habitat variables and including sufficient information for characterizing the habitat.

Kearney and Porter (2009) review these two approaches, including suggestions for combining them. Buckley et al. (2010) apply both approaches to predict the range of two lizard species across the United States and compare the results. The framework for HSI models as defined by the USFWS allows for both correlative and mechanistic relationships or a combination of both, although in practice most uses of the framework have relied upon mechanistic relationships.
<table>
<thead>
<tr>
<th>Model</th>
<th>Development</th>
<th>Practical use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>What question is being asked?</td>
<td>What type of data is available to construct the model?</td>
</tr>
<tr>
<td>Habitat Suitability Index according to USFWS 1981</td>
<td>How suitable is a particular site for a species?</td>
<td>Varies; may include expert opinion, mechanistic relationships, spatial data. In practice, often consists of range of tolerances or linear, stepwise, or categorical relationships.</td>
</tr>
<tr>
<td>Resource Selection Function (correlative SDM)</td>
<td>Where is a species likely to be observed given where it is currently observed?</td>
<td>Presence/absence or presence/available data for species; maps of environmental characteristics</td>
</tr>
<tr>
<td>Mechanistic niche modeling (mechanistic SDM)</td>
<td>Where could a species live given its physiological requirements?</td>
<td>Physiological lab/field studies relating physical habitat characteristics to growth, survival, and/or reproduction</td>
</tr>
</tbody>
</table>
References

Characteristics associated with juvenile Chinook salmon as they migrate within estuarine habitats have been attributed to metrics that include the size of fish as they enter the estuary, timing of entry (e.g., month or season), and residence time within particular habitats (Beamer et al. 2005; Fresh et al. 2005). These attributes are summarized according to qualitative descriptions of life history strategies adapted from Fresh et al. (2005) in Table 1. There are a number of potential hypotheses about different habitat requirements between different size classes of subyearling Chinook salmon, but we anticipate a lack of data on habitat requirements or tolerances that is specific to individual life history strategies for subyearling Chinook salmon. Bottom et al. (2005) reviewed studies of depth and velocity tolerances for subyearling Chinook salmon, and were not able to establish different depth tolerances for subyearling Chinook salmon for any sizes less than 100 mm. They found data on swimming speeds for Chinook salmon 51–73 mm and 81–126 mm, but conclude that threshold velocities of 30 cm s\(^{-1}\) would be sufficient for characterizing subyearling Chinook salmon. Campbell (2010) found a significant negative relationship between fork length and estuary residence time in spring and summer months, but not at other times of year.

Table 1. Generalized life history attributes associated with juvenile salmon in the Columbia River estuary (adapted from Fresh et al. 2005).

<table>
<thead>
<tr>
<th>Life History Strategy</th>
<th>Time of Estuarine Entry</th>
<th>Size at Estuarine Entry (mm)</th>
<th>Estuarine Residence Time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Fry</td>
<td>Mar - Apr</td>
<td><50</td>
<td>0-40</td>
</tr>
<tr>
<td>Late Fry</td>
<td>May - June</td>
<td><60</td>
<td><50</td>
</tr>
<tr>
<td>Early Fingerling</td>
<td>Apr - May</td>
<td>60-100</td>
<td><50</td>
</tr>
<tr>
<td>Late Fingerling</td>
<td>June - Oct</td>
<td>60-130</td>
<td>0-80</td>
</tr>
<tr>
<td>Yearling</td>
<td>Feb - May</td>
<td>>100</td>
<td><20</td>
</tr>
</tbody>
</table>

The data associated with environmental and habitat conditions as they relate to juvenile salmon in estuarine environments are limited such that we are likely unable to distinguish between the responses of individual subyearling Chinook salmon life history strategies. As such, the initial habitat modeling efforts will consider all subyearling Chinook salmon strategies as a single group. During the initial phases of building the model, this approach will allow us to be more inclusive of environmental data as they relate to juvenile Chinook salmon in estuarine habitats. By consolidating groups, we can use all available data even if they are specific to different subyearling life history strategies, different classification systems, or not specified at all. If sufficient data emerge to distinguish between life history strategies, the model can be subdivided to include such information.
Note: the physical habitat characteristics experienced by fish entering the estuary at different times of year vary considerably (e.g., temperature, flow), thus fish of different life history strategies, on average, experience different habitat conditions. The habitat conditions at a particular time of year will affect the inputs into the habitat model. What we are concerned with is whether fish of different life history strategies would respond similarly or differently if they were experiencing identical habitat conditions. That is, are individuals of different life history strategies physiologically distinct to the point where their growth or survival would also be distinct while occupying the same habitat at the same time. It will still be necessary to characterize habitat conditions at different times of year, but these conditions may apply to the same habitat-physiology model. Variation in residence times could be incorporated at this stage rather than within the habitat-physiology model itself.

References

Campbell LA, DL Bottom, EC Volk, and IA Fleming. 2010. “Life histories of juvenile chinook salmon (Oncorhynchus tshawytscha) in the Columbia River estuary as inferred from scale and otolith microchemistry.” Oregon State University, Corvallis, Oregon.

This memo is intended to accompany the prototype, rapid extraction, dike mapping for the estuary. These data were derived from Light Detection and Ranging (LiDAR) data via a computer-assisted geographic information system approach and are intended to provide an independently derived layer to be refined by a human analyst.

Methods

This dike layer was created by Pacific Northwest National Laboratory using computer-assisted feature extraction techniques and 1-meter LiDAR elevation data. Dikes are generally conspicuous in high-resolution LiDAR data as flat-topped, linear features with steeply sloping sides. The extraction methodology relied on feature extraction software Feature Analyst 4.2 from Overwatch Systems in the ArcGIS work environment. Feature analyst workflow requires the user to identify examples of the feature of interest, adjust extraction settings and (optionally) refine initial results by identifying correct and incorrect extractions. For each LiDAR tile, the analyst delineated 4 to 8 dike segments 30 to 100 meters in length, taking care to distribute examples over dikes of varying width and height. Because dikes exhibit unique cross-sectional characteristics (generally steeply sloped on both sides and flat on the top), slope data, derived from the LiDAR, were used in the extraction along with the LiDAR elevation data.

The Feature Analyst settings were as follows:

- Input bands; LiDAR elevation and LiDAR slope as reflectance
- Input representation; Bulls Eye 1, 15 pixels wide
- Aggregate areas; minimum area = 25 pixels
- Score shapes in vector output.

In some instances where the initial Feature Analyst results for a tile were extremely cluttered, Feature Analyst Hierarchical Learning was run to improve the results. Once the results were sufficiently complete, polygons were rasterized on the score attribute. In general, the features with higher scores better match the characteristics of the training data. To further refine the results, with more control than is afforded by the Feature Analyst workflow, a clean-up model was created in ERDAS Imagine. The clean-up model compared each candidate dike pixel to a score criterion, slope criterion and elevation above mean-high high water.

The clean-up model logic was as follows:

```
IF
Score > 0.6
AND
Slope < 20 degrees
```
AND
Elevation > MHHW
THEN
Retain dike pixel.

To smooth results, the retained pixels were then subjected to a Dialate-Erode process and clumps smaller than 35 pixels were removed from the layer.

The smoothed, cleaned candidate pixels were converted to polygons and skeletonized to a line using the Feature Analyst post-processing function “Polygon to Line.”

Some dangles remained as an artifact of the skeletonization. These were removed via ArcGIS Ver. 10 command “Trim” with a threshold of 75 meters. Finally to remove excess vertices, dike lines were generalized using Arc10 “Generalize” function with a 5-meter tolerance.

Figure 1. Estuary-wide view of the extraction results (in blue) compared to the existing dike layer (in red).
Goal

Establish physiological measure(s) to quantify benefits (or not) that juvenile salmon obtain from habitat restoration projects in the lower Columbia River and estuary (LCRE).

Issue

Applying fish physiology to action effectiveness research for habitat restoration is a complex undertaking requiring a key decision about whether to commence with field or laboratory work after the initial literature review.

Background

Under the U.S. Army Corps of Engineers’ (USACE’s) Salmon Benefits Project, Pacific Northwest National Laboratory (PNNL) has worked since 2009 on ways to index the "survival" benefits of habitat restoration in the LCRE. In the first study year, we performed a literature review that assessed and compared direct and indirect approaches. Direct methods to estimate differential survival rates in restored vs. unrestored areas are impractical given current technology. Indirect methods, such as fish physiology, hold promise. In the second study year, a field study at Cottonwood Island in the LCRE was conducted but the physiological methods were not successful for various reasons. In the third study year, we reassessed our approach and identified new fish physiology metrics based on USACE-sponsored research by PNNL supporting smolt survival estimation at main stem hydropower dams. In the fourth and final study year (2012), we proposed to assess proof-of-concept of new physiology metrics reflecting fish growth.

Physiological Metrics:

Below is a table of proposed measures that provide additional information about the detectability of difference or rate change that is expected to occur on various temporal scales.
<table>
<thead>
<tr>
<th>Gross Measures</th>
<th>Hours</th>
<th>Days</th>
<th>Weeks</th>
<th>Months</th>
<th>Years</th>
<th>Not TR dependent</th>
<th>Statistical Variability</th>
<th>Design Specific?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute growth (Individual)</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute growth rate (Sample)</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instantaneous growth rate (Sample)</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length-weight relationships (Sample)</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fulton’s condition factor (Sample)</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gut fullness</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td>Field Only</td>
</tr>
<tr>
<td>Gut contents</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Moderate</td>
<td>Field Only</td>
</tr>
<tr>
<td>Otolith growth</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Physiological Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNA : DNA</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>Low-Moderate</td>
<td>Comparison to 2010 effort</td>
</tr>
<tr>
<td>HSP90 Beta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low-Moderate</td>
<td>Stress</td>
</tr>
<tr>
<td>Ribosomal protein mRNAs (S13, S15, L8 and L22)</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>Low</td>
<td>Synthesis</td>
</tr>
<tr>
<td>IGF-1 Plasma</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Moderate</td>
<td>Synthesis</td>
</tr>
<tr>
<td>Free amino acids plasma</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low-Moderate</td>
<td>Synthesis</td>
</tr>
<tr>
<td>Calpain</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td>Degradation</td>
</tr>
<tr>
<td>MuRF1</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td>Degradation</td>
</tr>
<tr>
<td>myofibrillar protein degradation product, 3-methylhistidine (3-MH) plasma</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td>Degradation</td>
</tr>
<tr>
<td>HSP90 Alpha</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>Low-Moderate</td>
<td>Refeeding</td>
</tr>
<tr>
<td>Cytoskeleton mRNA</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>Low-Moderate</td>
<td>Compensatory growth</td>
</tr>
<tr>
<td>Myosin mRNA</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>Low-Moderate</td>
<td>Compensatory growth</td>
</tr>
</tbody>
</table>
The following table is a list of Benefits and Limitations of the proposed options.

<table>
<thead>
<tr>
<th>Study Options:</th>
<th>Lab Benefits</th>
<th>Lab Limitations</th>
<th>Cage Benefits</th>
<th>Cage Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Selection</td>
<td>Sequim: Has space and equipment</td>
<td>Sequim: Availability is in J/F and A/S/O</td>
<td>In-situ measurements</td>
<td>Variable</td>
</tr>
<tr>
<td>BONN SMF: Has space and equipment</td>
<td>BONN SMF: M/A/MU/J Would need more tanks</td>
<td>Leverage MSP and historical data for habitat characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time of Year</td>
<td>Variable</td>
<td>---</td>
<td>June and July</td>
<td>Only have 2-month window</td>
</tr>
<tr>
<td>Abiotic Factors</td>
<td>Controllable down to $\pm 2^\circ$C</td>
<td>Cannot mimic H_2O composition of LCRE</td>
<td>---</td>
<td>Highly variable</td>
</tr>
<tr>
<td>Fish Species</td>
<td>Chinook, Coho, Steelhead</td>
<td>Not all species available year round</td>
<td>Chinook</td>
<td>Not all species available year round</td>
</tr>
<tr>
<td>Applicability to multiple species</td>
<td>Yes</td>
<td>Strongest with tiered approach</td>
<td>Yes</td>
<td>Sites, time of year, abiotic factors will vary and add confounding effects</td>
</tr>
<tr>
<td>Capture of Fish</td>
<td>Hatchery, can use field samples</td>
<td>Requires transport from Hatchery to facility</td>
<td>No choice; hatchery</td>
<td>Requires transport to dock, and then transport to cage location</td>
</tr>
<tr>
<td>Fish Diet</td>
<td>Controlled</td>
<td>Not live feed</td>
<td>Natural</td>
<td>Unknown for quality or quantity</td>
</tr>
<tr>
<td>Numbers of Fish</td>
<td>20 fish/sample period</td>
<td>---</td>
<td>40 fish/sample period</td>
<td>We cannot house more than one treatment per cage because retrieving fish in the cage will be stressful and we would not want bias our sample</td>
</tr>
<tr>
<td>4 sample period/tank</td>
<td></td>
<td></td>
<td>1 sample period/cage</td>
<td></td>
</tr>
<tr>
<td>2 tanks/treatment</td>
<td></td>
<td></td>
<td>5 cages/treatment</td>
<td></td>
</tr>
<tr>
<td>3 treatments</td>
<td></td>
<td></td>
<td>2 treatments</td>
<td></td>
</tr>
<tr>
<td>Fish Source</td>
<td>Known</td>
<td>---</td>
<td>---</td>
<td>Unknown</td>
</tr>
<tr>
<td>History of Fish</td>
<td>Somewhat accessible</td>
<td>May have received therapeutics</td>
<td>---</td>
<td>Unknown; may have received therapeutics</td>
</tr>
<tr>
<td>Statistical Variance</td>
<td>Low; due to control of diet, and ambient conditions will reduce confounding variable and allow for smaller sample sizes</td>
<td>NA</td>
<td>High; even though the sample size is greater, the unknown diet composition, ambient variation and stock variation, there will be greater individual variability</td>
<td>NA</td>
</tr>
<tr>
<td>Experimental Repeatability</td>
<td>High</td>
<td>NA</td>
<td>Low; without knowing diet composition, and history of fish, there will be greater inherent variability and need to increase sample sizes and likely more experiments</td>
<td>NA</td>
</tr>
<tr>
<td>Safety</td>
<td>High; controlled lab environment</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Tiered Technical Approach

Fish physiology research requires a meticulous, thorough, progressive approach to succeed.

1. Lab: proof-of-concept
2. Lab: expansion of ranges and factors, verification of robustness
3. Field: proof-of-concept
4. Field: final verification.

Next Step

Develop a detailed study plan including experimental design, statistical analysis, schedule, and deliverables.

Measures

Muscle growth requires systems and reductionist approaches to capture feeding and physiology. Somatic growth is dependent on food intake and composition as well as the efficiency of digestion and the assimilation of nutrients. The insulin-like growth factors (IGF) system comprises IGF-I, IGF-II, several receptors, and six binding proteins (IGFBPs) and is one of the central pathways regulating protein synthesis in skeletal muscle. Protein degradation is complex and includes the ubiquitin–proteasome system, calpain proteases, the NF–kB pathway and lysosomes. The challenge will be to integrate gross and physiological interactions during growth with feeding and diet. One approach is to develop structured mathematical model of growth.

Gross

1. Quantification of growth using fork length (mm) and wet weight (g).
 a. Absolute Growth Rate (Growth Measurement). Absolute growth rate is the change in mass over time and is calculated as $G_a = (W_i - W_f)/\Delta T$, where W_f is the final weight, W_i is the initial weight, delta T is time in days of the exposure. On an individual basis, the variability in growth will be high. Large sample size is needed to reduced standard error.
 b. Instantaneous Growth Rate (Index of Growth). Growth rate will be calculated as a change in weight (assuming cage study design) divided by the time interval between sampling events. This is calculated as the $G_i = (\ln W_2 - \ln W_1)/\Delta T$ where G_i is growth rate, W_1 and W_2 are weights from the initial deployment and at recapture, respectively, and delta T is time in days of the exposure. This will be used to compare sample and treatment variability and growth, not invasively, but requires a large sample size to reduce error. Instantaneous growth rates are relatively insensitive to acute stressors, but can be indicative of chronic stress. It is not recommend for use in comparing different stages of life history due to the expected changes related to allometric growth.
 c. Length – Weight relationship (Index of Growth). This will be validated using $W = aL^n$ where W is weight, L is length, “a” is the constant of the line, and n is the exponent. “n” should be in the range of 2.5-3.5 to establish growth. As a salmon grow the weight changes are relatively greater than changes in length, which is related to cubic relationship between lengths and wet weights in salmon. This non-invasive measurement is used to compare sample and treatment growth.
variability, but requires a large sample size to reduce standard error. Length-weight relationships are relatively insensitive to acute stressors, but can be indicative of chronic stress. It is not recommended for use in comparing different stages of life history due to the expected changes related to allometric growth.

d. Fulton’s condition factor (Index of Growth). These measurements will be used to assess the growth of tissues and storage of energy that can result on great than expected weight at a particular length. It is calculated as: \(K = \frac{W}{L^3} \times 100,000 \), where \(K \) is the coefficient of condition, \(W \) is wet weight, and \(L \) is length. This factor will be used to compare sample and treatment variability and growth, not invasively, but requires a large sample size to reduce error. It is relatively insensitive to short-term acute stressors, but indicative of chronic stress. It does assume an exponent of “3,” which may not always be the correct; corrections can use the length and weight relationships. Time of year, maturity, prior history, smoltification, and changes associated with water/tissue content can affect this measurement.

2. Gut fullness (Field Approach).

Gut percent volume (\%V) is a fullness measure independent of allometric growth. It is often visually estimated at levels of 0, \(\leq 10 \), 25, 50, and \(\geq 75 \) \%V. Gut fullness is an indication of changes in stomach fullness with time, which reflects feeding activity. It is dependent on when the fish last consumed a meal, meal composition, temperature, life stage, sexual maturity, and stress (both acute and chronic). This measure is not an index of growth because it is not based on nutritional value. Because it is based on visual observations, using it for comparisons across studies should be done with caution. It can be used a possible indicator or correlate of nutritional uptake and associated measures.

The collection and analysis of stomach content data, however, has a number of drawbacks; it can be detrimental to the study animal; the material can be laborious to identify; and stomach contents can be highly variable based on variation in digestion rates, feeding habits, seasonal or diel collection times, fish size, and individual dietary whims (Bowen 1983). Food sources are not created equally and even though the fish are eating, they may be malnourished. This coupled with metabolic pathway information can give a better idea about food quality and the nutritional state of the fish. Ultimately, a controlled experiment should be conducted to further validate this.

The increments appear under the microscope as concentric rings, which are alternately clear (continuous zones) and dark (discontinuous zones). Each pair forms a daily growth increment. Sub-zones often appear, i.e., small rings formed with variable periodicity and probably caused by the ingestion of food, environmental variations, or stress (Pannella 1980). The width of daily increments can be influenced by a number of factors: food uptake (not amount of food taken in), temperature, acute and chronic stress depending on the perturbation, and other environmental conditions. The distance between increments expresses the daily growth of the individual, while the number indicates its age in days (Secor et al. 1995; Fossum et al. 2000; Panfili et al. 2002). Notably, somatic growth may not be proportional to otolith growth rates.
Biochemical Measures

Macromolecules have two roles: 1) positive energy balance periods (concentrations are established by their functional and structural roles); 2) negative energy balance periods (energetic value leads to their degradation). The relative importance of these roles leads to a temporal hierarchy in macromolecular mobilization during starvation. Because glycogen and triglycerides have a primary role as energy reserves, they are the first to be used during starvation, whereas proteins, glycoproteins, and phospholipids are broken down more slowly. Proteolysis in muscle fibers is essential for normal protein turnover (Obled et al. 1984). Prolonged starvation leads to white muscle degradation, as muscle glycogen and protein are used as energy sources. The breakdown of macromolecules leads to an accumulation of intracellular solutes, which in turn retains water in muscle fibers.

References

