AIS History and Future Improvements in Waterway Management

Presented at the Transportation Research Board (TRB-MTS) Conference held in Washington, DC 26-28 June, 2012
WHAT IS AIS?

- Primarily for safety and maritime domain awareness
- Time-stamped position
- Vessel identifying information
- Vessel type classification
- Vessel dimensions
- Vessel “behavioral” information
AIS IN REAL TIME
AGGREGATE AIS RECORD

\(X_{T0}, Y_{T0}; \{P_{T0}\} \)

\(X_{T1}, Y_{T1}; \{P_{T1}\} \)

\(X_{T2}, Y_{T2}; \{P_{T2}\} \)
WHAT DOES IT MEAN?
Aggregate AIS Record

- Automatic Identification System (AIS) essentially provides a remote sensing technology for:
 - Quantifying vessel interactions with navigation projects
 - Assessing system-level dynamics (project-to-project vessel movements)
 - Real-time monitoring of navigable conditions in USACE projects

Source: Scully, 2012
BASIC IMPLEMENTATION

- User Profiles
- Decision Support
- Vessel Transit Data Collection
User Profiles

- Size
- Type
- Activity
- Reach-Level

January 2009 Unique Vessels

- Vessel towing
- Vessel towing oversize
- Pleasure Craft
- HSC-DG, HS, MP, OS
- Tugs
- Passenger Ships
- Cargo Ships
- Cargo Ships - DG, HS, MP, Z
- Tankers - DG, HS, MP, X
- Tankers - DG, HS, MP, Y
- Tankers - DG, HS, MP, Z
- Tankers - No addl info
- Other - No addl info
- Cargo ships - reserved for future use
- Cargo ships - No addl info
Decision Support

- Suitability
- Interactions
- Potential Hazards
- Potential Damage
Vessel Transit Data Collection

- Similar Data
- Less Processing
- More Detail
- Cheaper
Vessel Transit Data Collection

- Channel Obstruction
- Event Verification
COMPLEX APPLICATIONS

- When are vessels in the channel?
- Tide corrected comparisons
- Detailed vessel comparisons
- How are traffic patterns changing?
- How do conditions affect vessels?
- Are navigation features working?
Tide Corrected Comparisons

- Draft-centered focus
- Draft compared to authorized project depth
- Draft compared to available depth
- Speed, heading or other
Detailed Vessel Comparisons

Draft as % Tide
Available Channel

Scenario 1
Scenario 2

High
106%
104%
102%
100%
98%
96%

Mid (Flood)

Low
Detailed Vessel Comparisons

Average Speed of TANKER vs CARGO 1/1-6/2009

- **Tanker Average Speed (m/s)**
- **Cargo Average Speed (m/s)**

- High
- 15.0
- 10.0
- 5.0
- Flood
- 0.0
- Ebb
- Low

BUILDING STRONG®
Changing Traffic Patterns

- Density plot changes over time represent response to changes in channel conditions.
Vessel Response

L = LENGTH, LB = DIM BOW, LS = DIM STERN
B = BEAM, BP = DIM PORT, BS = DIM STARBOARD
C = CENTERLINE LOCATION
OC = KEEL OFFSET = (BS - BP)/2
+ OFFSET, KEEL IS STARBOARD OF ANTENNA
- OFFSET, KEEL IS PORT OF ANTENNA
Feature Performance
Optimize System Performance

- System inputs include decision variables (things we control) as well as natural forcings that we don’t control.
- Also must account for real-world constraints, capacities, schedules, etc.
- Optimization techniques reveal the best combination of decisions to ensure the highest possible:
 - engineering performance
 - environmental benefits
 - system reliability
AIS History and Future Improvements in Waterway Management

Questions?

Brandan Scully
Brandan.m.scully@usace.army.mil

Dr. Kenneth Ned Mitchell
Kenneth.n.mitchell@usace.army.mil

USACE-HQ: (202)-761-0259