Graphene plasmonics for tunable terahertz metamaterials

Long Ju1, Baisong Geng1,6, Jason Horng1, Caglar Girit1, Michael Martin2, Zhao Hao2,3, Hans A. Bechtel2, Xiaogan Liang4, Alex Zettl1,5, Y. Ron Shen1,5 and Feng Wang1,5*

Plasmons describe collective oscillations of electrons. They have a fundamental role in the dynamic responses of electron systems and form the basis of research into optical metamaterials1–3. Plasmons of two-dimensional massless electrons, as present in graphene, show unusual behaviour4–6 that enables new tunable plasmonic metamaterials6–10 and, potentially, optoelectronic applications in the terahertz frequency range11,12. Here we explore plasmon excitations in engineered graphene micro-ribbon arrays. We demonstrate that graphene plasmon resonances can be tuned over a broad terahertz frequency range by changing micro-ribbon width and in situ electrostatic doping. The ribbon width and carrier doping dependences of graphene plasmon frequency demonstrate power-law behaviour characteristic of two-dimensional massless Dirac electrons4–6. The plasmon resonances have remarkably large oscillator strengths, resulting in prominent room-temperature optical absorption peaks. In comparison, plasmon absorption in a conventional two-dimensional electron gas was observed only at 4.2 K (refs 13,14). The results represent a first look at light-plasmon coupling in graphene and point to potential graphene-based terahertz metamaterials.

Graphene is an attractive two-dimensional (2D) carbon material. Electrons in graphene behave like massless Dirac fermions and exhibit many exotic physical phenomena, ranging from an anomalous quantum Hall effect15,16 and Klein tunnelling15,18 in electrical transport to a universal absorption constant19,20 and tunable interband transitions21,22 in optical response. Most of these phenomena are well accounted for by single-particle excitation of electrons. Plasmons in graphene, on the other hand, describe collective excitations of 2D massless electrons. Previous studies established that plasmons have an important role in graphene electron dynamics23 and lead to new composite excitations in the form of plasmarons24. Plasmon resonances in graphene have also been probed using inelastic electron scattering spectroscopy25,26 and inelastic scanning tunnelling microscopy27. However, the fundamental behaviour of light–plasmon coupling in graphene is little known, and the exciting opportunity to design terahertz metamaterials1–3 using patterned graphene structures has not been explored.

Here we report the first study of tunable plasmon excitations and light–plasmon coupling at terahertz frequencies in graphene micro-ribbon arrays. A micro-ribbon array is the simplest form of sub-wavelength infrared metamaterials. Plasmon excitations in such arrays correspond to collective oscillations of electrons across the width of micro-ribbons. We show that such plasmon excitations can be controlled through micro-ribbon width (w) where plasmon frequency scales as \(w^{-1/2} \). This scaling is characteristic of two-dimensional electron gases (2DEGs)5,6,13,14 and distinctly different from that of bulk plasmons. For a given micro-ribbon array, plasmon resonance can be further tuned in situ using electrostatic gating. Plasmon frequency varies with carrier concentration (n) as \(n^{1/4} \), a signature of massless Dirac electrons4–6. Comparisons between experimental plasmon frequencies and simulation results yield an effective dielectric screening \(\kappa \) of 5 in our devices. The observed light–plasmon coupling from massless electrons in graphene is remarkably strong: the integrated oscillator strength of graphene plasmons is an order of magnitude larger than that achieved in conventional 2D electron systems.5,13,14. Hence, graphene plasmon excitations lead to prominent terahertz absorption peaks at room temperature, but low temperatures (4.2 K) were required to measure plasmon absorption in conventional 2DEGs.13,14. The strong and tunable plasmon–light interaction, together with the excellent electrical properties of graphene and its compatibility with micro/nanofabrication, holds great promise for graphene-based terahertz metamaterials and optoelectronic devices.

Electromagnetic radiation cannot couple to plasmon excitations in homogeneous graphene sheets, but can readily excite plasmon resonances in engineered graphene structures with dimensions much smaller than light wavelengths. In our study we used a simple form of metamaterial made up of periodic graphene micro-ribbon arrays illustrated in Fig. 1a (not to scale) for terahertz plasmon excitations. Ribbon width varied from 1 to 4 \(\mu \)m and gap and ribbon width ratio was maintained at 1:1. We controlled the carrier concentration in graphene ribbon arrays using an ion-gel top gate, which allows a large doping range through electrostatic gating. Figure 1b shows the schematic side view of a typical gated device. The atomic force microscopy (AFM) image of a micro-ribbon array sample with a 4 \(\mu \)m ribbon width and its gate-dependent electrical resistance trace are shown in Fig. 1c, d, respectively. The device has a charge neutral point (CNP) at 0.2 V top gate voltage (\(V_g \)), and our samples have mobilities around 1,000 cm\(^2\) V\(^{-1}\) s\(^{-1}\).

We studied plasmon resonances and light–plasmon coupling in graphene micro-ribbon arrays using polarized Fourier transform infrared spectroscopy. Infrared absorption from doped charge carriers is directly related to \(-\Delta T/T_{CNP} \), the gate-induced decrease of transmission through graphene micro-ribbon arrays. Here \(T_{CNP} \) is the transmission coefficient at CNP and \(\Delta T = T - T_{CNP} \). The \(-\Delta T/T_{CNP} \) spectra of a gated 4 \(\mu \)m sample (\(V_g = -2.0 \) V) for terahertz radiation polarized parallel and perpendicular to the ribbons are shown in Fig. 1e and f, respectively.

For incident light polarized along the ribbons, the electrical response of charge carriers is similar to that of free electrons in a
Title: Graphene plasmonics for tunable terahertz metamaterials

Authors:

Performing Organization: University of California at Berkeley, Department of Physics, Berkeley, CA, 94720

DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

Abstract

To be filled in by the author(s).

Subject Terms

To be filled in by the author(s).

Security Classification of:

- Report: Unclassified
- Abstract: Unclassified
- This Page: Unclassified

Limitation of Abstract

Same as Report (SAR)

Number of Pages: 5

Name of Responsible Person:

To be filled in by the author(s).
The resulting light–plasmon coupling in graphene can be an order of magnitude stronger than that achieved in conventional 2DEGs, and enabled us to observe terahertz plasmon resonance for the first time at room temperature.

The plasmon resonance in graphene micro-ribbon arrays can be tuned in situ by electrostatic doping. For simplicity, we will focus on the hole-doping regime. We determine the gate-induced Fermi energy shift and carrier concentration in graphene through interband optical transitions. This is based on the effect that interband transitions can be blocked up to \(2|E_F| \) energy in hole-doped graphene as a result of empty initial states. Figure 2a shows gate-induced changes of interband transmission spectra in the 3,000–9,000 cm\(^{-1}\) spectral range at different gate biases. Increased infrared transmission is observed up to a threshold energy that shifts to higher values with increased doping. This threshold energy is at \(2|E_F| \) (refs 21,22), from which carrier concentration can be deduced by \(n = (|E_F|/\hbar v_F)^2/\pi \) (refs 15,16). Plasmon excitations in the graphene micro-ribbon array can be varied by electrical gating, as shown in Fig. 2b for absorption of perpendicularly polarized light. Prominent plasmon absorption peaks are observed, which shift to higher energies and gain oscillator strength with increased carrier concentration. For comparison, we show (in the inset of Fig. 2b) free carrier absorption spectra at different gate voltages (probed with light polarized parallel to micro-ribbons). The spectral shape remains the same in all spectra, although the oscillator strength increases with carrier concentration.

Plasmon excitations in graphene micro-ribbon arrays can also be controlled by engineering the ribbon width. Figure 2c shows AFM images of three micro-ribbon arrays with 1, 2 and 4 μm ribbon widths, respectively, and Fig. 2d shows \(-\Delta T/T_{CNP} \) spectra for the three structures. All spectra were taken at the same hole-doping...
Control of plasmon resonance through electrical gating and micro-ribbon width. a, Mid-infrared transmission spectra, T/CNP, of the graphene ribbon array in Fig. 1 as gate voltage $V_g - V_{\text{CNP}}$ varies from -0.3 to -2.2 V. The voltages corresponding to the unlabelled lines, starting with the red line and alternating downwards, are: -2.0 V, -1.6 V, -1.2 V, -0.7 V and -0.3 V. On electrical gating, optical transmission is increased up to a threshold energy of $2|E_f|$ as a result of blocked interband optical transitions. This threshold energy provides direct determination of Fermi energy E_f and carrier concentration $n = (|E_f|/\hbar v_F)^2/\pi$ in gated graphene. b, Control of terahertz resonance of plasmon excitations through electrical gating. Terahertz radiation was polarized perpendicular to the graphene ribbons. The plasmon resonance shifts to higher energy and gains oscillator strength with increased carrier concentration. For comparison, the inset shows corresponding spectra due to free carrier absorption for terahertz radiation polarized parallel to the ribbons. For this polarization, absorption strength increases with carrier concentration, but spectral shape remains the same. c, AFM images of samples with micro-ribbon widths $(ω)$ of 1, 2 and 4 μm. d, Change of transmission spectra with different graphene micro-ribbon widths for the same doping concentration of 1.5×10^{13} cm$^{-2}$. The Drude background contributed by unpatterned graphene around the arrays (as in Fig. 1f) was subtracted, and all spectra were normalized by their respective peak values for convenience of comparison. Plasmon resonance frequency $ω_p$, shifts from 3 to 6 THz when micro-ribbon width decreases from 4 to 1 μm.

Next we examine the quantitative scaling behaviour of plasmon resonance frequency with carrier concentration and ribbon width. Figure 3a plots plasmon resonance frequencies as a function of $|E_f|$ (or equivalently $|n|^{1/2}$ in the top label) for different micro-ribbon widths. For a given carrier concentration, the plasmon resonance frequencies in different graphene micro-ribbon arrays are described by a scaling behaviour of $ω_p \propto ω^{1/2}$. This is best shown in Fig. 3b, where all data in Fig. 3a fit into a universal curve with decreasing ribbon widths: resonance frequencies are at 3, 4, 1 and 6 THz for ribbon arrays of 4, 2 and 1 μm ribbon widths, respectively. Using nano- and micro-ribbon arrays with a larger range of ribbon widths, terahertz resonance from 1–10 THz can be straightforwardly engineered.

A theoretical understanding of the scaling behaviour of plasmon resonance in micro-ribbon arrays can be achieved using the quasi-static description, which is a good approximation for ribbon widths $(\sim 1 \mu m)$ much smaller than photon wavelengths $(\sim 100 \mu m)$. The Maxwell equations satisfying the 2D ribbon array boundary conditions can be simplified to

$$\frac{\partial \Phi}{\partial Y} = -\frac{2\pi i}{\kappa \omega} \frac{\partial}{\partial X} \left(\sigma^{2D} F(X) \frac{\partial \Phi}{\partial X} \right)$$

where $κ$ is the effective dielectric screening constant, $σ^{2D}$ is the 2D high-frequency conductivity at carrier concentration n, and $F(x)$ is a square function with $F(x) = 1$ at ribbon positions and $F(x) = 0$ in the gap (see Supplementary Information). By introducing dimensionless parameters $X = x/w$ and $Y = y/w$ and using the expression of $σ^{2D}$ for massless Dirac electrons, the above equation can also be expressed as

$$\frac{\partial \Phi}{\partial Y} = \eta \frac{\partial}{\partial X} \left(F(X) \frac{\partial \Phi}{\partial X} \right)$$

with the dimensionless parameter

$$\eta = \frac{2\pi^{1/2}}{\omega(\omega + i\Gamma)} \frac{\nu_F^2}{\hbar} \frac{n^{1/2}}{kw}$$

The electrodynamic responses of a micro-ribbon array are uniquely determined by the dimensionless parameter $η$. Maximum absorption...
of incident light takes place at a specific η value, which determines the plasmon resonance frequency ω_p for given values of w and n. When either ribbon width or carrier concentration changes, plasmon frequency will change accordingly following the scaling behaviour of $\omega_p \propto n^{1/4} \cdot w^{-1/2}$ (for weak damping rate Γ), as observed experimentally.

Although the differential equation readily explains the scaling behaviour of plasmon resonance frequency, it cannot be solved analytically for a quantitative value of ω_p. Instead, we use numerical calculations based on finite element methods to simulate this system, which has only one unknown parameter, namely the dielectric constant κ. Using a κ value of 5, the simulation (dashed line in Fig. 4a) reproduces well the observed $-\Delta T/T_{CNP}$ spectrum for a ribbon width of 4 μm and a doping concentration of 1.5 \times 1013 cm$^{-2}$ (solid line in Fig. 4a). The κ value of 5 is reasonable in our devices, given that the terahertz dielectric constants of ion gel, SiO$_2$ and silicon are 3 (ref. 29), 4 and 11 (ref. 30), respectively. Such a dielectric screening constant will lead an electron-electron interaction strength of $\alpha_{ee} = e^2/k_B T \approx 0.4$.

Figure 4b–d plots simulation results for current density amplitudes (top panels) and phases (bottom panels) in the same micro-ribbon array for frequencies below resonance (1 THz), at resonance (3 THz) and above resonance (5 THz), respectively. The current distribution describes electrons oscillating back and forth across the width of graphene micro-ribbons on terahertz irradiation. The oscillating current is highest at the plasmon resonance frequency. The relative phase of the oscillating current with reference to the incident electric field also varies quickly and changes sign at the resonance frequency. Both are characteristics of a resonant excitation.

Our studies show that plasmon resonances in graphene can be controlled in structure-engineered graphene micro-ribbon arrays,
which represent the simplest form of graphene terahertz metamaterials. Plasmons couple to terahertz radiation strongly, absorbing over 13% at the plasmon resonance for half a monolayer material at room temperature. Peak absorption at resonance can become even stronger with reduced plasmon linewidth, which is currently limited by the scattering rate as in Drude conductivity. We expect that in higher-quality graphene samples, the plasmon linewidth will be reduced in proportion to the increase in mobility. The strong and broadly tunable plasmon resonances observed here in graphene micro-ribbon arrays can be generalized for designing more sophisticated metamaterials based on graphene, and enable new ways of controlling terahertz and far-infrared radiation.

Methods
Large-area graphene was grown using chemical vapour deposition on copper and transferred the graphene sheet onto a Si/SiO2 wafer following ref. 31. Au/Cr electrodes of 50 nm thickness were deposited onto the graphene sheet in vacuum using stencil masks. Micro-ribbon arrays were fabricated in a 2.5 × 2.5 mm² area at the centre of the graphene sheet using standard optical lithography followed by oxygen plasma etching.

Infrared transmission measurements were performed with a Fourier transform infrared spectrometer at the Advanced Light Source in Lawrence Berkeley National Laboratory. All measurements were performed in 0.1 torr vacuum at room temperature.

Received 27 April 2011; accepted 27 July 2011; published online 4 September 2011

References

Acknowledgements
The authors thank R. Sagelman and B. Boudouris for providing the ion gel and X. Zhang for helpful discussions. This work was supported by an Office of Naval Research MURI award (N00014-09-1066 to L.J., J.H., C.G., A.Z. and F.W.) and the Office of Basic Energy Sciences, US Department of Energy (contract nos DE-AC02-05CH11231 for the Materials Science Division to Y.R.S. and F.W. and DE-AC02-05CH11231 for the Advanced Light Source). L.J. acknowledges US Department of Energy (contract nos DE-AC02-05CH11231 for the Materials Science Division to Y.R.S. and F.W. and DE-AC02-05CH11231 for the Advanced Light Source) and the Office of Basic Energy Sciences, US Department of Energy (contract nos DE-AC02-05CH11231 for the Materials Science Division to Y.R.S. and F.W. and DE-AC02-05CH11231 for the Advanced Light Source). F.W. also acknowledges support from a Lucile and William Packard fellowship and a Hellman family fellowship, and L.J. acknowledges the support of a Lam fellowship.

Author contributions
F.W. and L.J. conceived the experiment. L.J. carried out optical measurements, B.G., J.H., X.L. and C.G. contributed to sample growth and fabrication, and L.J. and F.W. performed theoretical analysis. All authors discussed the results and wrote the paper.

Additional information
The authors declare no competing financial interests. Supplementary information accompanies this paper at www.nature.com/naturenanotechnology. Reprints and permission information is available online at http://www.nature.com/reprints. Correspondence and requests for materials should be addressed to F.W.