Robot Battery Rundown Test Plan

PackBot Modernization Project

Ty Valascho, Dan Ryan
10/5/2012

A test plan to measure run down time of a battery-powered robot under several repeatable conditions.
Robot Battery Rundown Test Plan PackBot Modernization Project

Test Plan

To measure the amount of time a small robot remains powered and functional using two standard Li-Ion batteries, under a variety of operating conditions.

Authors:
Ty Valascho; Daniel Ryan

Performing Organization:
U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, MI 48397-5000

Sponsoring Agency:
U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, MI 48397-5000

Distribution Statement:
Approved for public release; distribution unlimited

Security Classification:
Unclassified

Limitation of Abstract:
Public Release

Number of Pages:
10

Abstract

A test plan to measure the amount of time a small robot remains powered and functional using two standard Li-Ion batteries, under a variety of operating conditions.
Objectives
This test is intended to measure the amount of time a robot remains powered and functional using two standard Li-Ion batteries, under a variety of operating conditions.

Requirements

Special equipment
- Loading device to simulate operation of the Unit Under Test (UUT) at grade while ambient temperature is kept at specific temperatures: robot dynamometer, load rig, or treadmill
- Temperature measurement device

Site requirements
- None

Procedure
3 trials of each the following tests must be performed with valid completion.

Idle Test, -20 C
1. Measure and record State of Charge (SOC) of 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).
2. Place UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.
3. Install ambient temperature sensor inside the chamber to measure inside air temperature
4. Monitor and log the power bus voltage of the platform. Rate of datalogging should be at least 0.1 Hz.
5. Bring temperature of chamber to -20 C and soak UUT and batteries for 2 hours.
6. Begin logging of data, monitoring power bus voltage.
7. Power on the UUT's Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.
8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.
9. Connect and verify communication to the UUT
10. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.
11. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.
12. If an invalid test, note the error or conditions which resulted in the end of test.
Idle Test, +25 C

1. Measure and record State of Charge on 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).

2. Place UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.

3. Install ambient temperature sensor inside the chamber to measure inside air temperature. Rate of datalogging should be at least 0.1 Hz.

4. Monitor and log the power bus voltage of the platform.

5. Bring temperature of chamber to +25 C and soak UUT and batteries for 2 hours.

6. Begin logging of data, monitoring power bus voltage.

7. Power on the UUT’s Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.

8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.

9. Connect and verify communication to the UUT

10. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.

11. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.

12. If an invalid test, note the error or conditions which resulted in the end of test.

Idle Test, +50 C

1. Measure and record State of Charge on 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).

2. Place UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.

3. Install ambient temperature sensor inside the chamber to measure inside air temperature. Rate of datalogging should be at least 0.1 Hz.

4. Monitor and log the power bus voltage of the platform.

5. Bring temperature of chamber to +50 C and soak UUT and batteries for 2 hours.

6. Begin logging of data, monitoring power bus voltage.

7. Power on the UUT’s Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.

8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.

9. Connect and verify communication to the UUT

10. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.

11. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.

12. If an invalid test, note the error or conditions which resulted in the end of test.
Maximum Normal Speed Test, -20 C

1. Measure and record State of Charge on 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).
2. Place loading device, UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.
3. Install ambient temperature sensor inside the chamber to measure inside air temperature. Rate of datalogging should be at least 0.1 Hz.
4. Monitor and log the power bus voltage of the platform.
5. Bring temperature of chamber to -20 C and soak UUT and batteries for 2 hours.
6. Begin logging of data, monitoring power bus voltage.
7. Power on the UUT's Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.
8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.
9. Connect and verify communication to the UUT
10. Hold the robot speed at 100% maximum platform speed in Normal mode on level ground. This speed will be kept constant for the entire test.
11. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.
12. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.
13. If an invalid test, note the error or conditions which resulted in the end of test.

Maximum Normal Speed Test, +25 C

1. Measure and record State of Charge on 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).
2. Place loading device, UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.
3. Install ambient temperature sensor inside the chamber to measure inside air temperature. Rate of datalogging should be at least 0.1 Hz.
4. Monitor and log the power bus voltage of the platform.
5. Bring temperature of chamber to +25 C and soak UUT and batteries for 2 hours.
6. Begin logging of data, monitoring power bus voltage.
7. Power on the UUT's Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.
8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.
9. Connect and verify communication to the UUT
10. Hold the robot speed at 100% maximum platform speed in Normal mode on level ground. This speed will be kept constant for the entire test.
11. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.
12. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.
13. If an invalid test, note the error or conditions which resulted in the end of test.

Maximum Normal Speed Test, +50 C
1. Measure and record State of Charge on 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).
2. Place loading device, UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.
3. Install ambient temperature sensor inside the chamber to measure inside air temperature. Rate of datalogging should be at least 0.1 Hz.
4. Monitor and log the power bus voltage of the platform.
5. Bring temperature of chamber to +50 C and soak UUT and batteries for 2 hours.
6. Begin logging of data, monitoring power bus voltage.
7. Power on the UUT’s Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.
8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.
9. Connect and verify communication to the UUT
10. Hold the robot speed at 100% maximum platform speed in Normal mode on level ground. This speed will be kept constant for the entire test.
11. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.
12. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.
13. If an invalid test, note the error or conditions which resulted in the end of test.

Maximum Fast Speed Test, -20 C
1. Measure and record State of Charge on 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).
2. Place loading device, UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.
3. Install ambient temperature sensor inside the chamber to measure inside air temperature. Rate of datalogging should be at least 0.1 Hz.
4. Monitor and log the power bus voltage of the platform.
5. Bring temperature of chamber to -20 C and soak UUT and batteries for 2 hours.
6. Begin logging of data, monitoring power bus voltage.
7. Power on the UUT’s Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.
8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.
9. Connect and verify communication to the UUT.
10. Hold the robot speed at 100% maximum platform speed in Fast mode on level ground. This speed will be kept constant for the entire test.
11. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.
12. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.
13. If an invalid test, note the error or conditions which resulted in the end of test.

Maximum Fast Speed Test, +25 C

1. Measure and record State of Charge on 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).
2. Place loading device, UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.
3. Install ambient temperature sensor inside the chamber to measure inside air temperature. Rate of datalogging should be at least 0.1 Hz.
4. Monitor and log the power bus voltage of the platform.
5. Bring temperature of chamber to +25 C and soak UUT and batteries for 2 hours.
6. Begin logging of data, monitoring power bus voltage.
7. Power on the UUT’s Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.
8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.
9. Connect and verify communication to the UUT
10. Hold the robot speed at 100% maximum platform speed in Fast mode on level ground. This speed will be kept constant for the entire test.
11. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.
12. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.
13. If an invalid test, note the error or conditions which resulted in the end of test.

Maximum Fast Speed Test, +50 C

1. Measure and record State of Charge on 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).
2. Place loading device, UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.
3. Install ambient temperature sensor inside the chamber to measure inside air temperature. Rate of datalogging should be at least 0.1 Hz.
4. Monitor and log the power bus voltage of the platform.
5. Bring temperature of chamber to +50 C and soak UUT and batteries for 2 hours.
6. Begin logging of data, monitoring power bus voltage.
7. Power on the UUT’s Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.
8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.
9. Connect and verify communication to the UUT
10. Hold the robot speed at 100% maximum platform speed in Fast mode on level ground. This speed will be kept constant for the entire test.
11. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.
12. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.
13. If an invalid test, note the error or conditions which resulted in the end of test.
TARDEC Battery Rundown Test Form

PackBot Performance Test

Start Date	
Start Time	
Robot Serial Number	
Tester Name	
Chamber Temperature (°C)	
Test Type	
Trial Number	
Test Number	
Data File Name	
Left Front Battery S/N	
Starting SOC (%)	
Ending SOC (%)	
Left Front Battery S/N	
Starting SOC (%)	
Ending SOC (%)	
Valid Test?	
Did the UUT remain in chamber for at least 2 hours before start of test?	
Did the data logger start recording prior to powering on the UUT?	
Was the battery SOC verified before installing the batteries in the UUT?	
Did the batteries remain uninstalled for at least 2 hours before the start of test?	
Notes	