Award Number: W81XWH-10-2-0093

TITLE: Use of the TRPV1 Agonist Capsaicin to Provide Long-Term Analgesia in a Rat Limb Fracture/Open Repair, Internal Fixation Model

PRINCIPAL INVESTIGATOR: Michael J. Buys, M.D.

CONTRACTING ORGANIZATION: Henry M. Jackson Foundation for the Advancement of Military Medicine
Rockville, MD 20852

REPORT DATE: October 2011

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Use of the TRPV1 Agonist Capsaicin to Provide Long-Term Analgesia in a Rat Limb Fracture/Open Repair, Internal Fixation Model

ABSTRACT

Traumatic orthopedic injuries comprise a large portion of the injuries that are seen in our military servicemen in Operation Iraqi Freedom and Operation Enduring Freedom. Previous to this study there had been only one animal model for acute long bone fracture pain described. This model was useful in studying fracture pain by itself, but due to the method of fracture stabilization, the model did not follow real-world circumstance for injury followed by repair. During this period of research we have successfully developed and tested a novel rat pain model for acute traumatic femoral fracture followed by repair via intramedullary nail fixation that closely mimics what happens in real-world situations. Our model is consistent and reproducible and will help facilitate the discovery and evaluation of novel pain relief techniques that could benefit care of our wounded warriors as well as civilian traumatic injuries. We are currently using this model to study the analgesic effect of capsaicin solution applied to the area of the fracture.

SUBJECT TERMS

Femur fracture, Rat Model, Pain, Capsaicin, Trauma, TRPV1
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>BODY</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>7</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>7</td>
</tr>
<tr>
<td>Conclusion</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>9</td>
</tr>
</tbody>
</table>
Introduction

The acute management of pain in the setting of traumatic extremity injury with bone fractures is an integral part in the care of many of the casualties in the current Areas of Responsibility, specifically from Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF). These injuries are associated with substantial acute pain that is often difficult to treat and may lead to the development of chronic pain syndromes that hamper the wounded soldier’s ability to rehabilitate, return to duty, or even to reintegrate into society. The current methods for treating acute pain associated with extremity injuries rely most heavily on opiates given either intravenously or orally. While these agents are useful in the treatment of acute pain, they have serious side effects like respiratory depression and sedation that limit their use especially in forward military locations. In addition, opiate use for pain control can lead to long term opioid tolerance, dependence, and addiction. Most alarmingly, opiate use has been associated with the development of hyperalgesia, leading to a state where the patient may experience pain even at sites distant from the initial injury.10,15,23,30

As our ability to adequately treat acute pain is not yet sufficient, even in our modern facilities,3 much focus has been given to find alternate modalities for acute pain control. Recently, a novel pain receptor site called the transient receptor potential vanilloid type I (TRPV1) has been targeted as a potential site of analgesic therapy. The TRPV1 receptor is a non-selective cation channel that is widely expressed in neuronal tissue and is present on the nociceptive A\textsubscript{δ} and C nerve fibers.34 The TRPV1 channel is important in the development and mediation of neurogenic pain and inflammation, chronic pain, and even may play a role in opioid induced hypersensitivity.22,33 TRPV1 expression and sensitivity on the cell membrane is modulated by proinflammatory cytokines such as prostaglandin E\textsubscript{2} (PGE\textsubscript{2}), prostacyclin (PGI\textsubscript{2}), protein kinase C (PKC) and protein kinase A (PKA), as well as by nerve growth factor (NGF) and neurotrophic factor (NTF), among others.25,28,31

TRPV1 is activated by the naturally occurring substance, capsaicin, as well as by its analog resiniferatoxin (RTX). Activation of TRPV1 by capsaicin and RTX leads to brief depolarization of the nerve followed by a prolonged inhibition of the receptor leading to blockage of noxious stimulus propagation along sensory nerves and analgesia that may last many weeks13 while sparing motor and tactile sensory function.5,20,21,26,27 TRPV1 inactivation has been shown to prevent neurogenic inflammation,14 and development of distant hyperalgesia induced by inflammation19 and by nerve injury.20 Numerous studies have shown the ability of the TRPV1 agonists capsaicin and resiniferatoxin to reduce or eliminate neuropathic pain, hyperalgesia, and pain related to soft tissue injury by either local or perineural infiltration.17,18,20,21 Additional studies have shown an analgesic benefit in humans using purified capsaicin injection.7,8,9,29 Moreover, unlike traditional local anesthetics, it seems that both capsaicin and resiniferatoxin have no apparent deleterious effects on nerve tissue21 or bone healing at low dose.22

Recently, lower extremity fracture pain models have been described in two rodent models.11,24 Both of these models are limited for their use studying the types of injuries incurred in combat as the fracture and surrounding soft tissue injuries are highly modified by having an intramedullary rod in place prior to the fracture. In real world combat injuries, much of the damage produced during the injury is due to deformation and displacement of the bone and subsequent injury to surrounding nerves, vessels, and soft tissues. To our knowledge, there are no published pain models for lower extremity fracture followed by fixation. In addition, there have been no published works evaluating the efficacy of locally applied capsaicin for analgesia in fracture pain or its effects on bone healing and local inflammation.
After a brief delay starting work on this research project due to deployment of the PI to Afghanistan, IACUC approval was obtained and work begun in February 2011. The initial work focused on completing Specific Aim #1, developing a traumatic femur fracture repair model in rats. In the original SOW, the intent was to use an open reduction, internal fixation model for fracture repair. However, after discussion with orthopedic surgeons, the PI’s own experience at a deployed trauma hospital, and further literature review, it was decided that an intramedullary nail model of fixation was more consistent with the type of repair most commonly used for non-complex femoral fractures in humans and is easily performed in the rat. Subsequently, a model was developed creating a traumatic femoral fracture in a rat followed by repair of the fracture using an anterograde intramedullary nail (Fig 1). This model has been tested, along with control groups, in 30 animals. We have shown that the fracture/repair model is relatively straightforward to accomplish and is highly reproducible. We are in the process of evaluating the fractured femurs by Micro CT scanning and histology for the quality of fracture repair over the 28 day study period. Clinically, all animals appeared to recover completely with no fixation failures.
After successful development of the fracture/repair model, we tested the model for pain behaviors using an incapacitance meter and guarding scores. An incapacitance meter measures the amount of force applied by both hind legs while standing. The amount of force the injured leg applies is reported as a percentage of the total weight from both legs (injured leg force/(left+right leg force)) and represents the amount of weight bearing done by the injured leg. Guarding behavior represents how much the animal protects or guards the injured leg over the course of an hour, with the score reported as a total score over an hour with a higher score reflecting more guarding behavior (favoring the injured leg). The pain behaviors demonstrated by animals in the fracture/repair group are robust during the initial 2-3 weeks after injury and then return close to baseline compared to non-injured control animals as shown in Figure 2 and Figure 3. This represents a novel animal pain model that has the potential to be useful for the study of the efficacy of different analgesic modalities for acute traumatic fractures.

![Figure 2: Incapacitance meter scores for the fracture/repair model and non-injured controls.](image)
After demonstrating robust pain behaviors in a fracture/repair model, we have begun work on Specific Aim #2 to test the efficacy of locally applied capsaicin around the fracture site for analgesia. We have tested ~75% of the animals and preliminary data is promising for showing a reduction in pain behavior in capsaicin treated animals compared to controls. Histology and Micro CT evaluation is ongoing.

Career Development:

The PI has maintained a schedule allowing him at least 2 days/week dedicated to research. During that time, the PI has worked with his mentor, Dr. Brennan, at the University of Iowa to learn methods for animal pain behavior testing, small animal surgical procedures, as well as general study design and execution. The PI has been directly involved in the ongoing research performing all of the surgical procedures and directly overseeing the behavioral testing and care of the animals. In addition, the PI has been able to use his dedicated research time to acquire additional grant funding from the Air Force Surgeon General that funds a study of a novel use of a neuropathic analgesic drug. Because of his research efforts, the PI was named as the Assistant Program Director over Research for the combined Air Force/Army anesthesiology residency program in San Antonio where he mentors residents in training on their research projects. Recently, the PI has been recruited by multiple academic institutions to join their faculty as a researcher in the field of pain medicine.

Key Research Accomplishments

1) Development of a novel closed traumatic femur fracture/repair model
2) Characterization of pain behaviors in the femur fracture/repair model and demonstration of this model as a useful pain model.

Reportable Outcomes

NONE
Conclusion

We have successfully developed a novel traumatic femur fracture/repair pain model in the rat. Pain behaviors were robust with this fracture model and should prove useful in the testing of diverse analgesic modalities for acute fracture pain. It is our belief that this model will help facilitate the development of novel analgesic modalities that will result in better pain relief for traumatic injuries in both our military and civilian populations.

Capsaicin treatment and vehicle control groups are at 75% completion. We anticipate completing the pain behavior testing on the capsaicin and control groups by November 2011. Micro CT and histology samples should be complete by early 2012.
References