Reduced Basis and Stochastic Modeling of Liquid Propellant Rocket Engine as a Complex System
W. A. Sirignano, A. Sideris, S. Menon, R. Munipalli, D. Ota, D. R. Kassoy

The treatment of combustion and flow processes in a liquid-propellant rocket engine as a complex system using a confluence of advanced mathematical methods is aimed to understand and characterize nonlinear triggering, transient oscillations, and limit-cycle oscillations at supercritical pressures.

• Complex systems involve stochastic behaviors of semi-autonomous components networked in a way that allows emergent behavior to develop.
• Our complex system components will include combustion chamber, convergent nozzle, propellant injectors, and all flow and thermal structures.
• Uncertainties that justify stochastic approach relate to magnitude, duration, and location of triggering disturbances; property values in supercritical domain.
• Stochastic processes may apply to fluctuations in propellant flow rates, fluctuations in fluid properties, and flow turbulence.
• Emergent structures of interest include large-amplitude acoustic oscillation.
• Stochastic terms may enter analysis as initial conditions, boundary conditions, or directly into differential equations as forcing functions or coefficients.
• Reduced Basis Modeling (RBM) coupled with LES will provide a rapid, efficient, and accurate analysis for the intensive stochastic computations.
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE	SEP 2012
2. REPORT TYPE	
3. DATES COVERED	00-00-2012 to 00-00-2012
4. TITLE AND SUBTITLE	Reduced Basis and Stochastic Modeling of Liquid Propellant Rocket Engine as a Complex System
5a. CONTRACT NUMBER	
5b. GRANT NUMBER	
5c. PROGRAM ELEMENT NUMBER	
5d. PROJECT NUMBER	
5e. TASK NUMBER	
5f. WORK UNIT NUMBER	
6. AUTHOR(S)	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	University of California Irvine, Irvine, CA, 92697
8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)	
10. SPONSOR/MONITOR’S ACRONYM(S)	
11. SPONSOR/MONITOR’S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT	Approved for public release; distribution unlimited
13. SUPPLEMENTARY NOTES	Presented at the 2012 AFOSR Space Propulsion and Power Program Review held 10-13 September in Arlington, VA. U.S. Government or Federal Rights License
14. ABSTRACT	
15. SUBJECT TERMS	
16. SECURITY CLASSIFICATION OF:	
a. REPORT	unclassified
b. ABSTRACT	unclassified
c. THIS PAGE	unclassified
17. LIMITATION OF ABSTRACT	Same as Report (SAR)
18. NUMBER OF PAGES	10
19a. NAME OF RESPONSIBLE PERSON	

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Program Flow Chart

- Subgrid Models (LEM, AVM, Asymptotic Hot Spots)
- Large Eddy Simulations (LES)
- Reduced Basis Models (RBM)
- Iteration
- Stochastic Analysis
- Identification of Triggering and Driving Mechanisms
- Scale-up to Many Injectors
- Foundation for Mitigation Strategy Development
- Validation
TEAM APPROACH

• UCI (Sirignano, Sideris, and Popov) will develop stochastic framework. They will formulate stochastic partial differential equations in coordination with Georgia Tech and Hypercomp.
• Georgia Tech (Menon and postdoc) will develop Large-eddy Simulation (LES) approach and make computations for specified realizations in the stochastic behavior.
• Hypercomp (Munipalli and Ota) will develop reduced basis models fitting the LES results. These RBMs will allow inexpensive computations of many realizations for the stochastic analysis.
• KISS (Kassoy) will develop and propose thermoacoustic and thermomechanical models to describe relevant combustion phenomena. Some of this modelling will also be done at UCI (Sirignano).
• Continuing communication and iteration amongst team members will occur.
• The approach and integration of contributions from team members will be tested on model equations as well as with full Navier-Stokes, multicomponent-flow based equations.
• The approach introduces and integrates various advanced mathematical and computational method: stochastic processes; asymptotic analysis; large-eddy simulation; reduced-basis modelling.
Stochastic modeling-Uncertainty quantification

- General stochastic PDE: \(\mathcal{L}(x, t, \omega; u) = f(x, t, \omega) \) with \(u(x, t, \omega) \) the solution, \(f(x, t, \omega) \) a forcing function, \(\mathcal{L} \) a (possibly) nonlinear differential operator, \(t \in [0, T] \) the time variable, \(x \in D \) spatial variables, and \(\omega \in \Omega \) signifying dependence on random quantities.

- Polynomial Chaos Expansion (PCE) approximation: \(u(x, t, \omega) \cong \sum_{i=0}^{N} u_i(x, t) \Phi_i(Z(\omega)) \), with \(Z = (Z_1, \ldots, Z_d) \) orthonormal RV’s, and the \(\Phi_i \)’s multi-dimensional orthogonal polynomials.

- Stochastic Galerkin (SG) approach: \(u_i(x, t) \), are obtained by requiring
 \[< \mathcal{L}(x, t, \omega; \sum_{i=0}^{N} u_i \Phi_i), \Phi_k > = < f(x, t, \omega), \Phi_k >, \; k = 0, 1, \ldots, N, \]
 which is a system of coupled deterministic PDE's in the \(u_i(x, t) \)’s.

- Stochastic Collocation (SC) approach:
 \[u_i(x, t) = \frac{1}{\gamma_i} < u(x, t, \omega), \Phi_i(Z(\omega)) > \cong \frac{1}{\gamma_i} \sum_{i=1}^{N} u(x, t, \omega^{(j)}) \Phi_i(z^{(j)}) w^{(j)}, \] (with \(z^{(j)}, \; j = 1, \ldots, M \) samples (quadrature nodes)) are obtained from the deterministic PDE’s: \(\mathcal{L}(x, t, \omega^{(j)}; u^{(j)}) = f(x, t, \omega^{(j)}) \).

- Remarks:
 - In both the SG and SC methods, the simulation approach of Georgia Tech and HyPerComp can essentially be used.
 - From the PCE expansion, statistics for the solution and machine learning tools for the detection of triggered instabilities will be developed.
ROM/RBM-LES Strategy

Realistic geometries
Boundary Conditions

LES
Combustion, Turbulence, Acoustic

Post-processing

Reduced order model/Reduced basis model

Prediction of combustion instabilities

Experiments
Validation
Domain reduction
Previous Experience and Year 1 - Work Plan @ GT

- POD/ROM analysis of existing LES data underway
 - LOX-GH2 supercritical jet mixing (PSU)
 - GH2-GOX subcritical instability (Purdue)
 - LOX-GCH4 supercritical combustion (CNRS)

Experiments (CVRC-Purdue)

- LES test case for transverse instability to be defined.
- Injector flow field characterization for RBM analysis
- Develop post processing tools for on-line and off-line analysis of the LES data
- Team collaboration to provide inputs for stochastic and RBM modelling.
The goal of RBM is to generate accurate models of the full governing equations with far fewer unknowns – without linearization or other approximations. We are planning for the following uses for RBM in liquid rocket combustion dynamics:

- **Parametric calculations, control, optimization**: RBM can be used to span a large parameter space efficiently in large scale computations (e.g., Re, mass flow rate, perturbation frequency…) This can be used in designing control laws, and automatic optimization. Due to the averaging property, POD is inefficient in multiparameter systems.

- **Geometric similarity**: To use the RBM with parameterized geometries to model topologically similar domains efficiently

- **Surrogate models in complex systems**: RBMs can be used to represent subsystems such as injectors when interfacing with more complex combustor models - a network of interoperating RBMs may be used.
Brief Description of the RBM Method

The full system of Favre filtered NS equations in LES:

\[
\frac{\partial Q}{\partial t} + F(Q) = \mathbf{w}
\]

Expand \(Q \) (Galerkin technique) in terms of modes:

\[
\psi_n \quad Q_{RBM}(x,t) = \sum_{n=1}^{N} Q_R(t)\psi_n(x)
\]

The modes \(\psi_n \) (usually orthogonal, but not necessarily) are obtained such that this approximation minimizes solution error (defined appropriately):

\[
\|Q(x,t) - Q_{RBM}(x,t)\| \leq \epsilon
\]

The coefficients \(Q_R \) are obtained as solutions to 1st order ODEs:

\[
\frac{d Q_R(t)}{d t} = A F(P^T \psi_n(x) Q_R(t)) + \mathbf{w}(\psi_n(x) Q_R(t))
\]

(A and P are pre-computed matrices)

Calculation is done in two parts – the first, “offline” procedure constructs a set of basis functions which provide the best representation of computed data.

Next, a set of ODEs are solved “online” where the system is modeled from \(N \) unknown modal coefficients \(Q_R \) – note the full CFD solution computes \(O(K) \) unknown values where \(K \) is the number of cells.

Model reduction implies \(N << K \)

Challenges: Determine appropriate modes; Stable, efficient computation of nonlinear fluxes.
1. **Thermomechanics**: Spatially distributed, transient, energy deposition \([Q(x,t)]\) into an isolated volume (hot spot length scale \(L\) and acoustic time scale \(t_A = L/a\), \(a\) = local acoustic speed) at a specific rate (heating time scale \(t_H\)). When \(t_H << t_A\), there must be a very low Peclet number and is not interesting here (unless radiation dominates). Much slower energy addition \((t_H >> t_A)\) occurs at nearly constant pressure. Density decrease causes a small expansion Mach number driving relatively weak mechanical disturbances into the unheated environment. **Conceptual outcome**: System conversion of thermal to kinetic energy provides a source for mechanical disturbances.

2. **Thermoacoustics**: Linear 1\(^{\text{st}}\) and 2\(^{\text{nd}}\) order, 2D, nonhomogeneous wave equations describe the response of a confined gas to \(Q(x,t)\) when \(t_H = O(t_A)\). Longitudinal and transverse disturbances can be generated; solutions include a forced response and all the eigenmodes excited by the heat input. Potential nonlinearization can be derived analytically from the 2\(^{\text{nd}}\) order, nonhomogeneous wave equation. Some modes can be immediately unstable. **Conceptual outcome**: Thermoacoustic modeling, describing hyperbolic phenomena is valid when the heating and the acoustic time scales are commensurate.
SUMMARY

- Innovative approach to explore the triggering mechanism of the instability and the driving mechanism for the nonlinear oscillation.

- Address the multi-injector rocket combustion chamber as a complex system with many semi-autonomous components that affect the nonlinear oscillatory macro-behavior.

- Establish key relations amongst the initiation process, nonlinear resonant oscillation growth, and transient to limit-cycle.

- The combination of new and emerging methodologies may not only aid in addressing the liquid-propellant rocket instability but can have other broader applications.