The Benefits of Implementing Low Impact Development at DoD Facilities
1. REPORT DATE
JUN 2010

2. REPORT TYPE

3. DATES COVERED
00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
The Benefits of Implementing Low Impact Development at DoD Facilities

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Weston Solutions, Inc, 5430 Metric Place, Norcross, GA, 30092

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the NDIA Environment, Energy Security & Sustainability (E2S2) Symposium & Exhibition held 14-17 June 2010 in Denver, CO.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES 47

19a. NAME OF RESPONSIBLE PERSON
Outline

- LID Definition
- LID Benefits
- Regulatory Background, News, Trends
- Fort Stewart LID Project
- Design Considerations
- Cost Effectiveness
- Questions and Discussion
Low Impact Development (LID) is a stormwater management strategy that maintains or restores the original site hydrology through infiltration, evapo-transpiration or reuse of stormwater.
Better LID Definition

Keep *Rain Water* From Becoming *Stormwater*!!
Structural LID Strategies (BMPs)

- Permeable Pavements
- Stormwater Harvesting
- Bio Retention (Infiltration)
- Rain Gardens
- Green Grid
LID Benefits

- Reduced Land Area Required for Development
- Watershed Protection and Groundwater Recharge
- Regulatory Stormwater Compliance by Reduced Pollutants, Total Flow and Peak Flow
- Sustains Existing Infrastructure
- Leadership in Environmental Energy and Design (LEED) Credits
LEED Credits

- Construction Site Pollution Prevention
- Habitat Protection/Restoration
- Maximize Open Space
- Control Stormwater Quantity and Quality
- Use of Water Efficient Landscaping
- Heat Island Effect
Stormwater
A Growing Concern

- 1982 - 1997 - 25 Million Acres was Developed (15 yrs)
 - 25% of ALL Developed Land in the United States
- 2000 to 2025 - 68 Million Acres
- Stormwater is one of the leading sources of pollution for all water bodies in the United States

Urban Stormwater Management in the United States, National Research Council (NRC) Oct. 2008
Regulatory Background

- Clean Water Act (CWA)
- National Pollution Discharge Elimination System (NPDES) – Reduce Industrial and Municipal Sewage Discharge (Point Source)
- 1987 Section 402(p) CWA - Address Pollution From Stormwater (Non-Point Source)
- 1990 - NPDES Phase I Rules – MS4s >100,000
- 1999 - NPDES Phase II Rules – Small MS4s
Regulatory News and Trends

Construction Stormwater Discharge

- Feb. 1, 2010 – EPA Final Rule For Effluent Limitation Guidelines (ELG) and New Source Performance Standards (NSPS) for Construction Runoff (280 NTU)
 - Aug. 1, 2011 – Disturbed Area 20 Ac. +

- Once Fully Implemented
 - Reduction of 4 Billion pounds/yr
 - Annual Cost $953 Million
Post-Construction Stormwater Discharge

- Fall 2012 – EPA To Develop ELG Rule
- What **Could** The New Rule Require?
 - Pre development hydrology mimics post development Hydrology
 - LID practices may be mandated through the state construction general permits.

“The lack of requirement for post-construction stormwater controls in the construction industry's general permit is a glaring shortcoming” and calls for "radical changes to EPA's stormwater control program”.

Urban Stormwater Management in the United States, National Research Council (NRC) Oct. 2008
January 2009 – EPA Determination Florida Numeric Nutrient Water Quality Standards (1st in the US)

October 2010 - Final Standards
- Lakes and flowing waters

October 2011 Final Standards
- Estuarine and Coastal Waters
Executive Orders and EPA Guidance

EISA Section 438

> Storm Water Runoff Requirements for Federal Development Projects.

“The sponsor of any development or redevelopment project involving a Federal facility with a footprint that exceeds 5,000 square feet shall use site planning, design, construction, and maintenance strategies for the property to maintain or restore, to the maximum extent technically feasible, the predevelopment hydrology of the property with regard to the temperature, rate, volume, and duration of flow.”
MEMORANDUM FOR ACTING ASSISTANT SECRETARY OF THE ARMY (INSTALLATIONS AND ENVIRONMENT)
ACTING ASSISTANT SECRETARY OF THE NAVY (INSTALLATIONS AND ENVIRONMENT)
ACTING ASSISTANT SECRETARY OF THE AIR FORCE (INSTALLATIONS, LOGISTICS, AND ENVIRONMENT)

SUBJECT: DoD Implementation of Storm Water Requirements under Section 438 of the Energy Independence and Security Act (EISA)

Reducing the impacts of storm water runoff associated with new construction helps to sustain our water resources. In October 2004, DoD issued Unified Facilities Criteria on Low Impact Development (LID) (UFC 3-210-10), a storm water management strategy designed to maintain the hydrologic functions of a site and mitigate the adverse impacts of storm water runoff from DoD construction projects. Using LID techniques on DoD facility projects can also assist in fulfilling environmental regulatory requirements under the Clean Water Act. Since 2004, DoD has implemented LID techniques for controlling storm water runoff on a number of projects.

EISA Section 438 (Title 42, US Code, Section 17094) establishes into law new storm water design requirements for Federal development and redevelopment projects. Under these requirements, Federal facility projects over 5,000 square feet must "maintain or restore, to the maximum extent technically feasible, the predevelopment hydrology of the property with regard to the temperature, rate, volume, and duration of flow." Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance (October 5, 2009), directed the U.S. Environmental Protection Agency (EPA) to issue EISA Section 438 guidance. DoD shall implement EISA Section 438 and the EPA Technical Guidance on Implementing the Stormwater Runoff Requirements for Federal Projects under Section 438 of the Energy Independence and Security Act, using LID techniques in accordance with the policy outlined in the attachment.

DoD shall implement EISA Section 438 using LID techniques in accordance with the policy outlined in the attachment.

Dorothy Rynon
Deputy Under Secretary of Defense
(Installations and Environment)
EISA Section 438

Flowchart for EISA §438 Implementation

1. Determine applicability
 - **Requirement:** apply to all Federal projects with a footprint greater than 5,000 square feet

2. Establish design objective
 - **Requirement:** maintain or restore predevelopment hydrology
 - **Options**
 1. Total volume of rainfall from 95th percentile storm is to be managed on-site.
 2. Determine predevelopment hydrology based on site-specific conditions and local meteorology by using continuous simulation modeling techniques, published data studies, or other established tools. Determine water volume to be managed onsite.

3. Evaluate design options
 - **Requirement:** meet design objective to maximum extent technically feasible (METF)
 - **Options**
 - Design water volume (to be retained)

4. Finalize design and estimate cost

TYPICAL ON-SITE DESIGN OPTIONS
- Bio-retention areas
- Permeable pavements
- Cisterns / recycling
- Green roofs

TECHNICAL CONSTRAINT EXAMPLES
- Retaining storm water on site would adversely impact receiving water flows
- Site has shallow bedrock, contaminated soils, high groundwater, underground facilities or utilities
- Soil infiltration capacity is limited
- Site is too small to infiltrate significant volume
- Non-potable water demand (for irrigation, toilets, wash-water, etc.) is too small to warrant water harvesting and reuse systems
- Structural, plumbing, or other modifications to existing buildings to manage storm water are infeasible
- State or local requirements restrict water harvesting
- State or local requirements restrict the use of green infrastructure/LID
Fort Stewart LID Project
Project Goal

Goal: Demonstrate the Benefits For Stormwater Volume Reduction and Quality Improvement Using LID Methods to Retrofit Two Existing Parking Areas

“Everyone seems to talk LID but folks won’t do it unless they see it in the ground. Walking the LID walk was what this project was about.”

Russell Moncrief, Fort Stewart/Hunter Army Airfield Stormwater Program Manager
ICPI Magazine, Sept, 2009
Project Scope

Scope Elements

- Design of LID BMPs
- Pre and Post LID Stormwater Monitoring
- Drawings and Specifications
- Construction Management
- Construction Quality Control
Design Basis
Paradigm Shift

- Conventional Stormwater Design
 - Flood Control
 - Stormwater Disposal

- LID Design
 - Account for Flood Control
 - Maximize Infiltration for Most Frequent Rain Events
 - Stormwater is a Resource Not a Disposal Issue

- Stormwater Stewardship
LID Design Considerations

- Stormwater Management Objectives
 - EISA, Water Quality Volume, TMDLs
- Site Specific Conditions
 - Soil Properties - Hydraulic and Structural
 - Water Table Elevation and Nearby Waters
 - Planned Development for Surrounding Area
- Design Limitations & Alternatives
 - Hot Spots
 - Topography
 - Adjacent Structures and Infrastructure
- Structural and Non-Structural BMPs
Permeable Pavement Design

Cross Section

TYP. NO. 9 AGGREGATE IN OPENINGS
CONCRETE PAVERS MIN. 3 1/8’ (80 mm) THICK
CURB/EDGE RESTRAINT (CIP)
6”X9” 4000 PSI STRENGTH WITH FIBER REINFORCEMENT
BEDDING COURSE 1 1/2 TO 2’ (40 TO 50 mm) THICK
(TYP. NO. 89 STONE)
3” (100 MM) THICK NO. 57 STONE
OPEN-GRADED BASE
8” (150 MM) THICK
NO. 4 STONE SUBBASE
NON-WOVEN GEOTEXTILE LINO EX160
SOIL SUBGRADE

PERMIABLE INTERLOCKING CONCRETE PAVEMENT CROSS SECTION
WITH CONCRETE EDGE RESTRAINT
N.T.S
Pre-LID: Concentrated Runoff
Recycle Asphalt
Excavate Soil Subbase
Construction Quality Control
Geotextile & Aggregate Layers
Interlocking Paver Installation
Finished Interlocking Concrete Pavement
Before / After
Rain Garden
Rain Garden & Dumpster Pad
Rain Garden
Rainwater Harvesting
Parking Area – Pre LID
Interlocking Concrete Pavement
Gravel Pavement
Gravel Pavement
Gravel Pavement
Cost Effectiveness #1

- Cost Comparison between Conventional (Impervious) Pavements and Permeable Pavement for the Retrofit of 22,000 SF of an Existing Asphalt Parking Area
- Minimum Service Life of Asset - 50 Years
- Use Life Cycle Cost Analysis (LCCA)
- Impervious Pavement Design Requires Stormwater Detention Pond, Drop Inlet Structures and Buried Pipe
Conventional Design
LID Design
Cost Effectiveness

<table>
<thead>
<tr>
<th>Initial Construction Cost</th>
<th>Asphalt Pavement</th>
<th>Concrete Pavement</th>
<th>Interlocking Concrete Pavement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Subbase Preparation</td>
<td>$40,000</td>
<td>$40,000</td>
<td>$40,000</td>
</tr>
<tr>
<td>Installation of New Pavement System</td>
<td>$2.84/SF</td>
<td>$4.88/SF</td>
<td>$7.70/SF</td>
</tr>
<tr>
<td></td>
<td>$62,600</td>
<td>$107,400</td>
<td>$163,400</td>
</tr>
<tr>
<td>Installation of Stormwater Infrastructure</td>
<td>$15,000</td>
<td>$15,000</td>
<td>0</td>
</tr>
<tr>
<td>Initial Construction Costs (ICC)</td>
<td>$117,600</td>
<td>$162,400</td>
<td>$203,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Life Cycle Cost Analysis (LCCA)</th>
<th>Asphalt Pavement</th>
<th>Concrete Pavement</th>
<th>Interlocking Concrete Pavement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Life (years)</td>
<td>25</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>Estimate Annual Maintenance (50 Yr Service Life)</td>
<td>$6,000 (2)</td>
<td>$3,000 (2)</td>
<td>$1,000</td>
</tr>
<tr>
<td>Replacement Interval Factor</td>
<td>2.0</td>
<td>1.67</td>
<td>1.11</td>
</tr>
<tr>
<td>Replacement Cost</td>
<td>$125,200</td>
<td>$179,400</td>
<td>$181,400</td>
</tr>
<tr>
<td>Avoided Costs</td>
<td>-</td>
<td>-</td>
<td>Land Area Not Required For Dry Detention Basin</td>
</tr>
<tr>
<td>Total Cost - LCCA (5)</td>
<td>542,800</td>
<td>$491,800</td>
<td>$434,400</td>
</tr>
</tbody>
</table>
Cost Effectiveness Results

- LCCA Shows Permeable Pavements Are More Cost Effective Than Conventional Pavements (Pavement Alone)
- Land Value Associated With Smaller Development Footprint
- Stormwater Compliance
- Non-Monetary Benefits
 - Public Perception of Excellence in Stewardship of our Natural Resources which leads to Employee Productivity
Cost Effectiveness #2

 “In 15 of the 17 case studies presented in this report showed that LID practices reduced project costs by 15% to 80% and improved environmental performance.”
LID Benefits For Stakeholders

- Improves Stormwater Quality - Removal of Pollutants and Reduction of Peak Flows for most frequent storm events
- Environmental - Regulatory Compliance (NPDES) Water Quality, TMDLs, Temperature
- Engineering - Stormwater Design, Peak Flow Reduction
- Master Planning - Land Use, Economic Analysis (LCCA)
Questions/Discussion

Russell Moncrief
FS/HAAF Stormwater Program Manager
1550 Frank Cochran Drive, Bldg. 1137
Fort Stewart, Georgia 31314
(912) 767-0271 office
russell.moncrief@us.army.mil

Richard Woodham, P.E.
Weston Solutions, Inc.
5430 Metric Place Norcross, Georgia 30092
(770) 325-7970 office
r.woodham@westonsolutions.com