Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204. Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR 2010</td>
<td></td>
<td>00-00-2010 to 00-00-2010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>System of Systems Engineering and Family of Systems Engineering from a Standards, V-Model, Dual V-Model, and DoD Perspective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northrop Grumman Corporation, Information Systems Sector, 468 Viking Drive, Virginia Beach, VA, 23452-7308</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presented at the 22nd Systems and Software Technology Conference (SSTC), 26-29 April 2010, Salt Lake City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>Same as Report (SAR)</td>
<td>39</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Copyright Acknowledgement

• Excerpts from "Systems Engineering" (EIA/IS 632), Copyright © 1994 by the Government Electronics and Information Technology Association a Sector of the Electronic Industries Alliance. All Rights Reserved. Reprinted by Permission. http://geia.org

• Dual V-Model excerpted, modified by John O. Clark (Northrop Grumman), Copyright © 2005 by The Center for Systems Management (CSM) Inc., and used by permission of Dr Kevin Forsberg.

• International Council of Systems Engineering (INCOSE) Systems Engineering Handbook, Version 3.1, August 2007, Copyright © 2007 by INCOSE, subject to the following restrictions: INCOSE use. Permission to reproduce this document and to prepare derivative works from this document for INCOSE use is granted, provided this copyright notice is included with all reproductions and derivative works. www.incose.org
Introduction – My Perspective

• System of Systems Engineering (SoSE) and Family of Systems Engineering (FoSE) continue to be two of the least well-understood SE disciplines.

• Knowledge of the SE process standards, the V-Model, and particularly the 3-dimensional Dual-V Model, significantly aid this understanding, including the relationship between SE, SoSE, and FoSE.

• The goals of this presentation are to:
 – Define SoS, SoSE, and FoSE from an SE Standards perspective
 – Describe the original V-Model and the Dual-V Model
 – Show how to apply these SE Standards and V-Models to a system, to SoSs, and to FoSs
 – Encourage and challenge the participants to understand, select, tailor, and apply these SE standards and V-Models to complex SoSs and FoSs

• Individuals may have an understanding of portions of SE, SoSE, and FoSE based on other sources. The SE Standards, V-Model, and Dual-V Model provide a more complete and common understanding.
Introduction – My Perspective (cont)

- SoSE versus SE is currently debated in the literature and at conferences such as this

- Question: Is engineering a SoS really any different from engineering an ordinary system?
 - Some believe SoSE is “different” from SE, the SE processes are inadequate or insufficient for SoSE, and additional processes are needed.
 - Others, like me, believe the SE processes as documented in the SE standards: IEEE 1220, EIA/IS-632, EIA-632, ISO 15288, and the guide: ISO TR 19760, are a necessary and sufficient set of processes for SoSE, and no additional processes are needed. Otherwise, please help us revise these standards.

- In my opinion (based on reading, comparing, understanding, teaching, revising, tailoring, and applying the SE standards):
 - There is only one classical SE process
 - There are multiple views of this one classical process
 - These multiple views provide a comprehensive view as shown in the next chart. By understanding them, you get a comprehensive view.
What is Different About SoSE and FoSE? – My Perspective

• The management (e.g., acquisition) processes are inadequate, not the technical (SE Standards) processes:
 – There is no god (no overall Program Manager) of a SoS or FoS
 – Acquisitions are stovepipes (single systems, not SoS or FoS)
 – Systems are directed to “integrate” with other systems, often after fielding
 – Suppliers don’t cooperate with each other in FoSE (they believe it’s not in their best interest)
 – Acquirers don’t cooperate with each other for the same reason
 – FoSE costs more up-front to develop for re-use (but saves much more later)
 – Interoperability is hampered by lack of SoSE and FoSE
System Building Block

System

Products

Processes

People

Subsystem

Subsystem
System of Systems Building Blocks

- System
 - Products
 - Processes
 - People
 - Subsystem
 - System
 - Products
 - Processes
 - People
 - Subsystem
 - Subsystem
V-Model

Original V-Model (Entity V-Model)

- USER REQUIREMENTS, SYSTEM CONCEPT, VALIDATION PLAN
- SYSTEM SPECIFICATION AND VERIFICATION PLAN
- CONFIGURATION ITEM (CI) “DESIGN-TO” SPECIFICATIONS AND VERIFICATION PLAN
- “BUILD-TO” SPECIFICATIONS AND VERIFICATION PROCEDURES
- FABRICATE, ASSEMBLE, CODE
- TRAIN

VALIDATION
- VALIDATE SYSTEM TO USER REQUIREMENTS
- INTEGRATE SYSTEM AND VERIFY TO SPECIFICATIONS
- ASSEMBLE CI’S AND VERIFY TO SPECIFICATIONS
- INSPECT/TEST TO “BUILD-TO” SPECIFICATIONS

VERIFICATION
- DECOMPOSITION AND DEFINITION
- INTEGRATION AND VERIFICATION

Notes:
- = JOC Additions
- “Design-To” Spec = Requirements Spec
- “Build-To” Spec = Design Spec

Copyright © 2010 by Northrop Grumman Corporation
V-Model (cont)

Dual V-Model Example Details (1 System V)

1 System
2 Subsystems
4 Lowest Configuration Items

Dual V-Model Copyright 2005 by The Center for Systems Management (CSM) Inc.,
and used by permission of Dr Kevin Forsberg.

Copyright © 2010 by Northrop Grumman Corporation
V-Model (cont)

Dual V-Model Example

1 System
2 Subsystems
Entity V-Models
4 Lowest Configuration Items

System V-Model

Dual V-Model Copyright 2005 by The Center for Systems Management (CSM) Inc., and used by permission of Dr Kevin Forsberg.

Copyright © 2010 by Northrop Grumman Corporation
V-Model (cont)

Dual V-Model Example Details (1 System Entity V)

Dual V-Model Copyright 2005 by The Center for Systems Management (CSM) Inc., and used by permission of Dr Kevin Forsberg.

Copyright © 2010 by Northrop Grumman Corporation
Dual V-Model Example Details (2 Subsystem Entity Vs)

Dual V-Model Copyright 2005 by The Center for Systems Management (CSM) Inc., and used by permission of Dr Kevin Forsberg.
V-Model (cont)

Dual V-Model Example Details (4 Lowest Configuration Item Entity Vs)
V-Model (cont)

Dual V-Model Example Sequence

Start

End

System V-Model

1 System

2 Subsystems

Entity V-Models

4 Lowest Configuration Items

Dual V-Model excerpted, modified by John Clark (Northrop Grumman), and Copyright 2005 by The Center for Systems Management (CSM) Inc., and used by permission of Dr Kevin Forsberg.
Baselines, Documents, and Reviews for a System – My Perspective

FULL MENU

Review Types:

A R F PD I

Document Types:

 ORD/ ICD
 S/SS IRS
 S/SS IRS S/SDD
 SDD IDD DBDD

System Requirements Baseline

System Allocated Baseline = Subsystem Requirements Baseline

Subsystem Allocated Baseline = LCI Requirements Baseline (e.g., Software CI Requirements Baseline)

Copyright © 2010 by Northrop Grumman Corporation
Simple Definitions of SoS and FoS – My Perspective

- **SoS:** The sum of the whole is *greater* than the sum of the individual parts
 - The parts are integrated (i.e., have interfaces)
 - The parts may or may not be members of a common domain (such as a product line, for example: surface ship radars)

- **FoS:** The sum of the whole is *equal* to the sum of the individual parts
 - The parts are not integrated
 - The parts are members of a common domain (such as a product line)
U.S. Department of Defense’s Definitions of SoS

Defense Acquisition Guidebook (DAG)-2006 Definition of SoSE

• Deals with planning, analyzing, organizing, and integrating the capabilities of a mix of existing and new systems into a SoS capability greater than the sum of the capabilities of the constituent parts.

• SoSs should be treated and managed as a system in their own right, and should therefore be subject to the same systems engineering processes and best practices as applied to individual systems.

• Differs from the engineering of a single system. The considerations should include the following factors or attributes:
 • Larger scope and greater complexity of integration efforts;
 • Collaborative and dynamic engineering;
 • Engineering under the condition of uncertainty;
 • Emphasis on design optimization;
 • Continuing architectural reconfiguration;
 • Simultaneous modeling and simulation of emergent System of Systems behavior; and
 • Rigorous interface design and management.
A SoS is a set or arrangement of systems that results when independent and useful systems are integrated into a larger system that delivers unique capabilities.

Both individual systems and SoS conform to the accepted definition of a system in that each consists of parts, relationships, and a whole that is greater than the sum of the parts; however, although an SoS is a system, not all systems are SoS.

Consistent with the DoD transformation vision and enabling net-centric operations (NCO), SoS may deliver capabilities by combining multiple collaborative and autonomous-yet-interacting systems.

The mix of systems may include existing, partially developed, and yet-to-be-designed independent systems.
U.S. Department of Defense’s Definitions of SoS (cont)

(References the Draft Defense Acquisition Guidebook (DAG)-2008
(not issued in 2008) for the Definition of a SoS)

• The SE Guide to SoS identifies 3 new SoS SE “roles”:
 − Translating Capability Objectives
 − Understanding Systems & Relationships
 − Monitoring & Assessing Changes

• My Opinion: It is unclear to me why these three SoS SE roles are really “new.” In my opinion they are included in the 16 technical and technical management processes defined in the DAG chapter 4, and are included in the SE Standards, V-Model, and Dual-V Model on which the DAG chapter 4 is based.
A SoS is defined as a set or arrangement of systems that results from independent systems integrated into a larger system that delivers unique capabilities.

Both systems and SoS conform to the accepted definition of a system, in that each consists of parts, relationships, and a whole that is greater than the sum of its parts.

While a SoS is a system, not all systems are SoS.

SoS engineering deals with planning, analyzing, organizing, and integrating the capabilities of a mix of existing and new systems into an SoS capability greater than the sum of the capabilities of the constituent parts.

SoS engineering is an activity that spans the entire system’s life cycle; from pre-Milestone A through Disposal.
Interim Defense Acquisition Guidebook (DAG)-2009 Definition of SoSE

Types of Systems of Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual</td>
<td>Virtual SoS lack a central management authority and a centrally agreed upon purpose for the SoS. Large-scale behavior emerges—but this type of SoS should rely upon relatively invisible mechanisms to maintain it.</td>
</tr>
<tr>
<td>Collaborative</td>
<td>In collaborative SoS, the component systems interact more or less voluntarily to fulfill agreed upon central purposes. The Internet is a collaborative system. The Internet Engineering Task Force works out standards but has no power to enforce them. The central players collectively decide how to provide or deny service, thereby providing some means of enforcing and maintaining standards.</td>
</tr>
<tr>
<td>Acknowledged</td>
<td>Acknowledged SoS have recognized objectives, a designated manager, and resources for the SoS; however, the constituent systems retain their independent ownership, objectives, funding, and development and sustainment approaches. Changes in the systems are based on collaboration between the SoS and the system.</td>
</tr>
<tr>
<td>Directed</td>
<td>Directed SoS are those in which the integrated SoS is built and managed to fulfil specific purposes. It is centrally managed during long-term operation to continue to fulfill those purposes as well as any new ones the system owners might wish to address. The component systems maintain an ability to operate independently, but their normal operational mode is subordinated to the central managed purpose.</td>
</tr>
</tbody>
</table>
U.S. Department of Defense’s Definitions of FoS

Defense Acquisition Guidebook (DAG)-2006 Definition of FoS

- Is not considered to be a system per se.
- Does not create capability beyond the additive sum of the individual capabilities of its member systems.
- Basically a grouping of systems having some common characteristic(s). For example, each system in a FoS may belong to a domain or product lines (e.g., a family of missiles or aircraft).
- Lacks the synergy of a SoS.
- Does not acquire qualitatively new properties as a result of the grouping. In fact, the member systems may not be connected into a whole.
A family of systems is a grouping of systems having some common characteristic(s).

For example, each system in a family of systems may belong to a domain or product line (e.g., a family of missiles, aircraft, or situation awareness systems).

In general, a family of systems is not considered to be a system per se because it does not necessarily create capability beyond the additive sum of the individual capabilities of its member systems.

A family of systems lacks the synergy of a SoS.

The family of systems does not acquire qualitatively new properties as a result of the grouping. In fact, the member systems may not be connected into a whole.
U.S. Department of Defense’s Definitions of FoS

(References the CJCS Definition of a FoS)

• A set of systems that provide similar capabilities through different approaches to achieve similar or complementary effects.

• For instance, the war fighter may need the capability to track moving targets. The FoS that provides this capability could include unmanned or manned aerial vehicles with appropriate sensors, a space-based sensor platform, or a special operations capability. Each can provide the ability to track moving targets but with differing characteristics of persistence, accuracy, timeliness, etc.
INCOSE’s Definitions of System and SoS

• A system is a combination of interacting elements organized to achieve one or more stated purposes.

• System of systems applies to a system-of-interest whose system elements are themselves systems; typically these entail large scale inter-disciplinary problems with multiple, heterogeneous, distributed systems.

Further simplification by myself leads to:

• System of systems applies to a system whose system elements are themselves systems.
V-Model Example for a System of Systems

Dual V-Model excerpted, modified by John Clark (Northrop Grumman), and Copyright 2005 by The Center for Systems Management (CSM) Inc., and used by permission of Dr Kevin Forsberg.
Baselines, Documents, and Reviews for a SoS – My Perspective

FULL MENU

Review Types:
A R F PD I

Document Types:
ORD/ICD S/SS S/SS SDD SDD
ICD IRS IRS HDD IDD
S/SS IRS IDD DBDD

SoS LEVEL

SoS requirements allocated to system

SoS Allocated Baseline = System Requirements Baseline

SYSTEM LEVEL

System requirements allocated to subsystem

System Allocated Baseline = Subsystem Requirements Baseline

SUBSYSTEM LEVEL

SoS requirements allocated to system

SoS Allocated Baseline = System Requirements Baseline

Copyright © 2010 by Northrop Grumman Corporation
V-Model Example for a System or SoS – My Perspective

Incorrect V-Model

Systems Thinking - My Perspective

You Are Here

Copyright © 2010 by Northrop Grumman Corporation
Everything and everyone (from the universe to the nucleus of an atom) is a system, a SoS, and a subsystem of a higher-order system.

Everything and everyone that exists/existed (things, people, thoughts, sayings, writings, actions, etc.) uses/used the systems engineering process.

You see everything and everyone as a system, a SoS, a subsystem of a higher-order system, and a member of a FoS.

You “Stand on the standards”

You have “The Knack”
Conclusion – My Perspective

• Is engineering a SoS really any different from engineering an ordinary system?

• Some believe that SoSE is “different” from SE, the SE processes are inadequate or insufficient for SoSE, and additional processes are needed.

• Others, like me, believe the SE processes as documented in the SE process standards, and as illustrated in the V-Model and Dual-V Model, are a necessary and sufficient set of processes for SoSE, and no additional processes are needed. If you disagree, please get involved in the SE standards working groups and help us fix them. What is needed is additional guidance on how to apply these SE processes to SoSE.
Summary

• Introduction
• Systems Engineering Views
• What is Different About SoSE and FoSE?
• Building Block
• V-Model
• Technical Baselines, Documents, and Reviews for a System
• Simple Definitions of SoS and FoS
• INCOSE’s Definitions of System and SoS
• U.S. Department of Defense’s Definitions of SoS and FoS
• V-Model Example for a System of Systems
• Technical Baselines, Documents, and Reviews for a SoS
• Systems Thinking
• Conclusion
• Summary
THE END!

For More Information Contact:

John O. Clark, Chief Engineer
Northrop Grumman Corporation
Northrop Grumman Information Systems Sector
Defense Systems Division
Warfare Systems Engineering Department
468 Viking Drive
Virginia Beach, VA 23452-7308 USA

john.clark@ngc.com
(757) 481-1504
NORTHROP GRUMMAN
BACKUP

Not in the IEEE Paper
Hypotheses, Challenges, and Objectives

• Hypotheses:
 - The SE Standards and V-Models describe the SE processes very well.
 - The SE Standards and V-Models contain a necessary and sufficient set of SE processes for solving complex SE and SoSE/FoSE problems.
 - Apply the SE Standards and V-Model processes that we already have to these problems, they will work.
 - The technical (SE Standards and V-Model) processes are adequate, the management (e.g., DoD acquisition) processes are not

• Challenges:
 - Communicate what the SE Standards and V-Models say about the SE processes for solving complex SE and SoSE/FoSE problems.
 - Gain consensus on what the SE Standards and V-Models say.
 - Convince stakeholders to read, understand, tailor, and apply the SE Standards and V-Models to solve these problems.
 - Obtain help to correct the SE Standards and V-Models if they’re inadequate.

• Objectives:
 - Describe SE, SoSE, and FoSE from the SE Standards and V-Models perspective / view (EIA/IS-632, IEEE 1220, EIA-632, ISO 15288, Dr Kevin Forsberg)
 - Demonstrate that these SE standards and V-Models contain a complete set of SE processes for complex SE and SoSE/FoSE problems, and no additional processes are necessary
 - Show how to apply these SE standards and V-Models
 - Promote “Systems Thinking”