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Abstract 

 

The foundation of the nonlinear theory of asymmetric anisotropic sandwich plates with a first 

order compressible weak orthotropic core under a Friedlander-Type explosive blast is presented. 

The equations of motion are developed by means of Hamilton’s Principle. Within the theory, the 

face sheets are asymmetric while adopting the Love-Kirchoff  model. In addition, the core layer 

is assumed to be compressible (extensible) in the transverse direction thereby capturing any 

wrinkling(local) or global instabilities. The theory is then simplified and  applied for applicable 

cases of sandwich plates with symmetric orthotropic and cross-ply facings under blast loading. 

The governing solution is developed using the Extended-Galerkin method resulting in two 

coupled nonlinear second-order ordinary differential equations which are then solved using the 

Adaptive (variable time increments) 4
th

-Order Runge-Kutta Method for a system of differential 

equations. Results are then validated for the case of a uniform pressure pulse for the 

incompressible core case. It is shown that reasonable agreement exists. 

 

Key Words: Sandwich Panel; Dynamic Response; Blast; Transient Response; Friedlander; Shock    

                     Loading; Structural Response 

 

1. Introduction 

 During combat situations, the structure of army military vehicles may have to withstand 

explosive blast loading, the residual effects of which are the blast pressure, fragmentation, and 

heat. Due to their outstanding characteristics, sandwich structures can be adopted in armored 
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plating and the vehicle hull structure of armored vehicles and possibly other key parts of the 

vehicle. Their advantages consist of, among other things, a high bending stiffness and strength to 

weight ratio and are lightweight in structure. These structures also provide: a) excellent thermal 

and sound insulation; b) increased durability under a thermo-mechanical loading environment; 

and c) tight thermal distortion tolerances. As a result, these structures may reveal many 

advantages when implemented into military armored military vehicles. 

The purpose of this paper is not only for the benefit of the Army, in regards to structural 

applications, but also to fill in some of the gaps existing within the literature. Several papers 

currently existing present results, regarding the blast of sandwich panels.  Among these papers 

several factors are considered while others are neglected. The following authors [3,4,10,11] 

considered blast loading of sandwich panels while neglecting the normal or transverse 

deformation of the core. Authors such as [5,6,7,12] have considered the deformation of the core 

for both under water and in-air explosive-type loading with the in-air case limited to a sonic 

boom and triangular pulse-type loading. In addition, the theory was limited to symmetric 

sandwich panels. To advance beyond this, the authors [14,15] considered the effect of a higher-

order compressible core (2
nd

-order) with an exponential decay. Within these authors works a 

different theoretical approach was taken as compared with [5,6,7,12]. Numerical or experimental 

results [2,9,13,17] have shown that the core experiences significant deformation during sudden 

impact. Therefore, the consideration of the deformation of the core within the governing theory 

is imperative. Finally, to capture a more representative model for in-air blast loading, The 

Friedlander-type model should be utilized. To-date the most comprehensive analytical theory 

presented on sandwich panels is given by [5,6,7,12]. In few of these papers [6,7,12] a nonlinear 

theory for symmetric anisotropic sandwich plates and shells incorporating a compressible core 



UNCLASSIFIED: Dist A. Approved for public release 

 

UNCLASSIFIED: Dist A. Approved for public release 

 

exposed to under water blast and in-air blast loading has been presented with the above 

mentioned limitations.   

This paper expands beyond the previous authors by presenting and laying the foundation for  a 

geometrically nonlinear theory of asymmetric sandwich plates with a first order compressible 

core exposed to an in-air Friedlander-type explosive loading. The results are then presented for a 

simplification of the governing equations for the case of symmetric orthotropic and cross-ply 

facings.  

2. Basic Assumptions and Preliminaries 

Presented in Fig. 1 is a geometrical representation of a sandwich structure. The structure consists 

of asymmetric facings with a thick core between the facings. The face sheets are assumed to be 

asymmetric with respect to the global mid-surface (mid-surface of the core). The face sheet 

thicknesses for the top and bottom face sheets is denote by b
f

t
f tt and , respectively, while ct

denotes the thickness of the core. A Cartesian coordinate system is placed as shown, in Fig. 1, 

with the transverse direction, 3x assumed positive in the downward direction. 

   The tangential stiffness of the sandwich plate is assumed large which implies small tangential 

deformations. In contrast, large deformations can occur in the transverse direction. The face 

sheets are assumed incompressible while the core is assumed to be compressible in the transverse 

direction. Consistent with the concept of small tangential and large transverse displacements, the 

tangential and rotatory inertias are neglected. Where as, only the transverse inertias are 

considered. Finally, in addition, it is assumed that: 

1. The face sheets fulfill the Love-Kirchoff  assumptions and are thin compared with the 

core.  

 

2. The bonding between the face sheets and the core is assumed to be perfect. 
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3.  The kinematic boundary conditions at the interfaces between the core and the facings are 

satisfied. 

 

4. The core is assumed to be a weak orthotropic transversely compressible core carrying 

only the transverse strains and the normal strain. 

 

5. The shock wave pressure is uniformly distributed on the front face of the sandwich plate. 

3. Kinematic Equations 

3.1 Displacement Field 

   Consistent with standard plate and shell theory and adopting the Love-Kirchoff assumptions 

the displacement field for the top and bottom facings is given as: 
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In the above equations, the Greek indices have the range 1, 2, while the Latin indices have the 

range 1, 2, 3 and unless otherwise stated, Einstein’s summation convention over the repeated 

indices is assumed. Also, i,)( denotes partial differentiation with respect to the coordinates ix , 

while superscripts t and b indicate the association with the top and bottom facings respectively. 

   A second order power series is assumed for the core tangential displacements while a first 

order polynomial is assumed for the core transverse displacement [5,6,7,12]. With this in hand, 

the core displacement field is represented in compact notation as 
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Satisfying the interfacial continuity conditions at the interfaces between the facings and the core, 

namely: 

Top face sheet/core interface )2( 3 ctx   
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α υυ  ,   tc υυ 33     (4a,b) 

Bottom face sheet/core interface )2( 3 ctx   
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  (5a,b)    
 

Results in the following displacement field for the core. 

c
α

c

d
α

c

b
f

t
fa

α

c

b
f

t
fd

α

c

d
α

b
f

t
fa

α

b
f

t
fa

α
c
α

t

x

ux
t

tt
ux

t

tt
u

t

x
u

tt
u

tt
uυ

Φ1
4

22

2

44

2

2
3

,33,33
3

,3,3




























 














 














 














 


 (6a) 

d

c

ac u
t

x
utzyxυ

3
3

33

2
),,,(    (6b) 

For the special case of symmetric facings with respect to the global mid-surface, fb
f

t
f ttt  . In 

Equations (1a,b), (2a,b), and (6a,b) the displacement functions 
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represent the average and the half difference of the face sheet mid-surface displacements while, 

the core displacements, c
αΦ

 
represent warping functions of the core.  

3.2  Non-Linear Strain-Displacement Relationships 



UNCLASSIFIED: Dist A. Approved for public release 

 

UNCLASSIFIED: Dist A. Approved for public release 

 

The strain-displacement relationships given by the Lagrangian Strain-Displacement 

Relationships used in conjunction with the Von-Karman assumptions is given in compact 

indicial notation as:
  

                                                         
jiijjiij υυυυγ ,3,3,,2   (8a) 

 

In expanded form, they are given as 
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   Substituting the displacement relationships, Eqs. (1a,b), (2a,b) and (6a,b) into the nonlinear 

strain-displacement relationships, for the individual layers of the structure (top, bottom, and core 

layers), results in: 
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and  
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In the above expressions, ),( da
αβγ are referred to as the average and half difference of tangential or 

membrane strains of the top and bottom facings; while, ),( da
αβκ  are referred to as the average and 

half difference of the bending strains of the top and bottom facings. The expressions for the 

membrane and bending strains are provided in Appendix A.  

   For the core, the strain-displacement relationships take the form  

                                                                      

333
c
i

c
i

c
i κzγγ  ,           (11) 

In these expressions, c
iγ 3  and c

iκ 3 are the membrane and bending strains, respectively. These 

expressions are also provided in Appendix A.   

4. Constitutive Equations 

Both the top and bottom face sheets are considered to be constructed from unidirectional fiber 

reinforced anisotropic laminated composites, the axes of orthotropy not necessarily being 

coincident with the geometrical axes ),( 21 xx . The stress-strain relationships for each lamina of 

the facings becomes 



UNCLASSIFIED: Dist A. Approved for public release 

 

UNCLASSIFIED: Dist A. Approved for public release 

 

                                                 


















































12

22

11

66

2622

161211

12

22

11

2Sym γ

γ

γ

Q

QQ

QQQ

τ

τ

τ

 (12) 

Where 

ijQ for  i, j = (1, 2, 6) are the Transformed plane-stress reduced stiffness measures. See Reddy 

[16].  

   The stress-strain relationships for the orthotropic core with the geometrical and material axes 

coincident are expressed as 

                                         
ccccccccc γGτγGτγEτ 2323231313133333 ,,  .  (13a-c)  

5. Equations of Motion and Boundary Conditions 

   An energy approach is taken to determine the equations of motion and as a by product, the 

boundary conditions. Letting U represent the strain energy, W represent the work done by 

external forces, and T represent the kinetic energy, Hamilton’s Variational Principle can be 

expressed as 
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   It should be mentioned that hamilton’s principle is valid for both elastic and elastic-plastic 

theoretical models. Assuming a weak compressible core, the variation of the strain energy and 

work can be written as 
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Where ijτ are the tensorial components of the second Piola-Kirchoff stress tensor, while A is 

attributed to the area of the sandwich plate. With respect to the work done by external loads, only 
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the external work done by the transverse loading due to the explosive pressure pulse as well as 

energy loss due to structural damping will be considered. All work due to tangential loadings 

will be neglected. The Wδ takes the form 

    
  

A

bbbccctttbbtt dAδυυCδυυCδυυCδυtxxqδυtxxqWδ 33333332133213 222),,(ˆ),,(ˆ   (16) 

where ),,( 21 txxq t denotes the transverse pressure loading from a spherical air-blast and C is the 

structural damping coefficient per unit area of the plate. Discarding  tangential and rotatory 

inertia effects, the variation of the kinetic energy can be written as 
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Where cρ and b
f

t
f ρρ , , are the mass densities of the core and the top and bottom face sheets, 

respectively, and υ  denotes the transverse acceleration. 

The equations of motion, in terms of the global stress resultants and stress couples are obtained 

by substituting Eqs. (15) – (17) and the strain-displacement relationships, Eqs. (9) – (11), while 

utilizing the definitions of the stress resultants and stress couples into Hamilton’s Equation (14), 

while collecting the coefficients of each of the virtual displacements, integrating by parts where 

ever feasible, and invoking the independent and arbitrary character of the virtual displacements 

results in the following nonlinear equations of motion along with the corresponding boundary 

conditions. 
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In the above equations, the global stress resultants and stress couples are defined as  
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Where the local stress resultants and stress couples are given as: 
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The local stress resultants and stress couples can be expressed in terms of the displacements by 

substituting the corresponding constitutive relationships, Eqs. (12), (13a-c) along with the strain-

displacement relationships, Eqs. (9) – (11) into Eqs. (14) - (16). This results in 
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Bottom face: 
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Where, 
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For the special case of symmetric facings with respect to the local mid-surfaces, 0][ ),( bt
ijB . The 

stress resultants in terms of the strain deformation components of the core take the form 
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The core stiffness’s are given by  
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Where no summation, with respect to the repeated indices, is assumed. The core transverse and 

normal moduli are given as:  

                                                   
c
xz

cc
yz

ccc GQGQEQ  554433 ,,  (26) 

 

The corresponding boundary conditions are given as: 
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0  

0,3 a
nu  or  0a

nnM
 (27g)

   

0,3 d
nu  or  0d

nnM
 (27h)

  

Where n and t are the normal and tangential directions to the boundary. When 1n , 2t , and 

when 2n , 1t  . The quantities with an overcaret represent the prescribed quantities on the 

boundary. 

   For the case of simply supported boundary conditions, the boundary conditions become:  

Along the edges ),0( nn Lx    

                                       033  dad
nn
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nn
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nt
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nt

d
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a
nn uuMMNNNN   (28a-h) 

6. Spherical in-Air blast Loading of the Friedlander-Type 

With the ever increasing demands for increased safety for the warfighter in the field to operate 

structurally sound vehicles in the event of an IED or some other type of explosive, it is 

imperative that an understanding of the structural response of various components within 

military combat vehicles under an explosive blast be understood so that measures can be taken 

from a design standpoint to ensure the durability and survivability of these components. To begin 

to achieve this understanding, the type of explosive loading considered here is a free in-air 

spherical air burst. Such an explosion creates a spherical shock wave which travels radially 

outward in all directions with diminishing velocity. The form of the incident blast wave from a 

spherical charge is shown in Fig. 2. Where     is the peak overpressure above ambient pressure, 

   is the ambient pressure,    is the time of arrival,    is the positive phase duration of the blast 

wave, and   is the time. The waveform shown in Fig. 2. is given by an expression known as the 

Friedlander equation and is given as  
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                                  ]/)(exp[]/)(1)[()( 00 papaSt tttαtttqqtq   (29a) 

Where,   

                                                   ZZZqS /108/114/1772 23
0   (29b) 

 In Eq. (29b),  Z is known as the scaled distance given by 
3/1/WRz  with R being the standoff 

distance in meters and W  being the equivalent charge weight of TNT in terms of kilograms. 

Also,   is known as the decay parameter which is determined by adjustment to a pressure curve 

from a blast test.  

For the conditions of standard temperature and pressure (STP) at sea level, the time of arrival at

and the positive phase duration pt  can  be determined from [8]  

                                                         3/1
111 )/(// WWRRtt       (30) 

Where 1t represents either the arrival time or positive phase duration for a reference explosion of 

charge weight 1W , and   represents either the arrival time or positive phase duration for any 

explosion of charge weight  . The determination of the standoff distance for any charge weight 

W follows a similar reasoning. The application of these relationships is known as cube root 

scaling. It should be understood that in applying these relationships that the standoff distances 

are themselves scaled according to the cube root law.  

7. Solution Methodology 

   Up to this point, the overall governing system of equations developed, applies to asymmetric 

sandwich plates both locally and globally with laminated composite facings and a weak 

transversely orthotropic first-order compressible core under transverse loading. For the purpose 

or scope of this paper, the equations will be simplified for the case of symmetric sandwich plates 
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with orthotropic and cross-ply facings with a transversely orthotropic compressible core under a 

Friedlander-type of explosive transverse loading. 

6.1 Special Case: Symmetric orthotropic single layer facings 

   For this special case, fb
f

t
f ttt  . In fulfillment of the geometric boundary conditions, a 

suitable representation for 
da uu 33 and,  is given by: 

                                                   )sin()sin()( 213 xμxλtwu nm
a
mn

a   (31a) 

                                                   )sin()sin()( 213 xμxλtwu nm
d
mn

d   (31b) 

where 21 , LπnμLπmλ nm  . m and n are the number of sine half-waves in the corresponding 

directions whereas )(and)( twtw d
mn

a
mn denote the modal amplitudes as a function of time of the 

transverse displacement functions. The transverse loading is represented by 

                                          ),sin()sin()(),,( 2121 xμxλtqtxxq nmmnt   (32a) 

which implies through integration of both sides over the plate area that  

                             
2

0

1

0
212121

21

)sin()sin(),,(
4

)(
L L

nmtmn dxdxxμxλtxxq
LL

tq . (32b) 

Letting, 

                         ]/)(exp[]/)(1)[()(),,( 0021 papaStt tttαtttqqtqtxxq   (32c) 

and integrating gives 

                                                     
2

)(16
)(

πmn

tq
tq t

mn   (32d) 

   The chosen solution methodology of the governing system of equations is the Extended 

Galerkin method. With this in mind, the first two equations of motion, Eqs. (18a), can be 

satisfied by assuming a stress potential approach with the following representations. 
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                                                          ωρβραωαβ φccN ,  (33) 

where αβc denotes the 2-D permutation symbol. This introduces another variable in the 

governing system of equations that requires determination. The determination comes from a 

compatibility condition or equation. The compatibility equation can be obtained from the 

membrane or tangential strains from the strain-displacement relationships, Eqs. (9,10) and 

Appendix A by eliminating the in-plane displacements. This results in:
 

                        
ddaadaaaa uuuuuuγγγ 22,311,322,311,3

2
12,3

2
12,311,2212,1222,11 )()(2   (34) 

Keeping in mind that for symmetric orthotropic and or cross-ply facings 0][ ),( bt
ijB and 

0, 66 
f
α

f
α DA ,  the following global constitutive relationships can be determined by utilizing 

Eqs. (19a,b) and (21a,b) which are given as 
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 (35a,b) 

 

where b
ij

t
ij

f
ij AAA  . By performing a matrix inversion in Eq. (35a), utilizing Eqs. (33), and 

substituting into Eq. (34) provides the following nonlinear partial differential equation in terms 

of the Airy’s stress potential. 

         ddaada uuuuuuφAφAAφA 22,311,322,311,3
2

12,3
2

12,31111,221122,66
*
122222,

*
11 )()()2(    (36) 

where 1][][   f
ijij AA . From Eq. (36) φ can be determined by assuming the following general 

functional form then substitituting into Eq. (36), and comparing coefficients.  
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where the expressions for, 4321 and,,, CCCC are provided in Appendix B. With the Airy’s Stress 

potential function in hand along with Eqs. (34a,b), (33), the first two relationships of Eq. (35a), 

and the expressions for the membrane strain components from Appendix A, yields a system of 

two coupled inhomogeneous partial differential equations in terms of aa uu 21 and . By assuming 

the following two general solutions for  ,and 21
aa uu shown below in Eqs. (38a-b) and 

substituting these expressions into the coupled partial differential equations, and comparing 

coefficients gives. 
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Where the constants 3131 and EEDD  are provided in Appendix B.  

   By expressing the third and fourth equations of motion, Eqs. (18b) in terms of displacements 

utilizing Eqs. (24) and (35b) with the corresponding strain deformation components from 

Appendix A two coupled partial differential equations result. These coupled partial differential 

equations can be solved simultaneously by assuming dd uu 21 and, in the following form. 
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Then substituting these displacement representations into the coupled partial differential 

equations and comparing coefficients. These coefficients 3131 and BBAA  are provided in 

Appendix B.  

   Utilizing the core deformation components 
c
iκ 3 from Appendix A in conjunction with the 

constitutive equations (24b) the fifth and sixth equations of motion (18c) can be expressed in 

terms of displacements. The result is two simultaneous algebraic equations allowing for the 

determination of 
c
αΦ . The result is given as 

                                                           
d
α

dd
α

cc
α uuu

t
,33,3

2

1

4
Φ   (40)   

 

   This relationship reduces an 9 parameter system ( φuu c
α

d
i

a
i and,Φ,, ) to a 7 parameter system (

φuu d
i

a
i and,, ) by eliminating the variable 

c
αΦ  from the governing system. At this point the first 

six equations of motion are satisfied and all displacement functions are known. These 

displacement functions Eqs. (31a,b), (37), (38a,b), (39a,b), and (40) satisfy all of the transverse 

geometric boundary conditions and the boundary conditions with respect to the stress couples, 

d
nn

a
nn MM and .  The remaining boundary conditions with respect to the tangential stress 

resultants, 
d
nt

d
nn

a
nt

a
nn NNNN ,,, ,

 will be satisfied in an integral average sense through application 

of the Extended-Galerkin Method. The only unknowns at this point are the modal amplitudes, 

)(and)( twtw d
mn

a
mn  which are determined by means of the extended Galerkin Method, (Hause et 
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al [2,3]).  By expressing the last two unfulfilled equations of motion, Eqs. (18d,e), and the 

unfulfilled boundary conditions in terms of displacements through the use of Eqs. (33), (35a,b), 

(37), (38a,b), and (39a,b) and retaining these expressions in Hamilton’s Energy Functional 

carrying out the indicated integrations and collecting the coefficients of the modal amplitudes 

d
mn

a
mn ww and  keeping in mind that the variations of 

d
mn

a
mn wδwδ and  are arbitrary and 

independent from each other and that the corresponding coefficients must vanish results in two 

nonlinear coupled second order ordinary differential equations in terms of the modal amplitudes 

which is solved using the Adaptive 4
th

-order Runge-Kutta method for a system of differential 

equations. This sytem of differential equations is given as: 
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2

)()()()( 2
21

2
20

3
03

2
02012

mnd
mn

a
mn

da
mn

dd
mn

dd
mn

dd
mn

dd
mn

d
mn

q
wwCwCwCwCwCwCwm    (41b) 

The coefficients 21200301301210 ,,,, CCCCCCC   are expressions which depend on the material 

and geometrical properties of the structure which are provided in Appendix C. C is the damping 

coefficient, while mnq  is the amplitude of the transverse loading. 

8. Results and Discussion 

Results are presented next for the dynamic response of simply supported sandwich plates along 

all four edges and freely movable under various fixed or varied geometrical and material 

properties of the structure exposed to blast loading to develop a deeper understanding of what 

effect these parameters play in the behavior of the structure. The results consist of two parts. The 

first part is concerned with comparisons/validations and the second part is concerned with the 

current or present results produced from the governing theory.  

8.1 Validation 
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To validate the results, The dynamic response of a sandwich plate with an incompressible weak 

core impacted by a uniform pressure pulse was chosen from R.S. Alwar et al [1]. The sandwich 

plate is assumed to be simply supported and freely movable along all four edges. The uniform 

pressure pulse is given by mnπqtqmn
2

016)(   where 0q  is the uniform pressure.   

    The geometrical and material properties used for the validation are given for the face-sheets 

as, m83.121  LL , m000406.0ft , (GPa)96.681 
f

E , (GPa)96.682 
f

E , 

(GPa)92.2512 
f

G , 33.012 
f

ν , and )(Kg/m38.2768 3fρ . The corresponding properties for 

the core are provided as m0.00635ct , (MPa)5914.2213 
cG , (MPa)5914.2223 

cG , 

)(Kg/m85.121 3cρ . Other parameters such as the fiber orientation and layup of the facings, 

the nondimensional damping parameter, and the uniform pressure are given, respectively, as 

]0/Core/0[ , 0Δ  , Pa 123.2 and Pa 61.60 q . From Fig. 3, it can be seen that close agreement 

exists. It should also be noted that for the incompressible core case 0d
mnw which implies that 

)()( twtw mn
a
mn  which is constant throughout the thickness of the structure.  

8.2 Present Results 

   For the present results, unless stated otherwise, the following geometrical and material 

properties are given, respectively, for the face-sheets as mm5ft , mm90021  LL ,

(GPa)2071 
f

E , (GPa)17.52 
f

E , (GPa)55.2
12


f

G , 25.0
12


f

ν , and )(Kg/m22.588,1 3fρ . 

The corresponding properties for the core are provided as mm50ct , (GPa)33 cE , 

(GPa)1027.013 
cG , (GPa)0621.023 

cG , )(Kg/m16 3cρ . Other parameters such as the fiber 

orientation and layup of the facings, the nondimensional damping parameter, the peak 
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overpressure 0sq , the ambient pressure 0q , the positive phase duration pt , and the rate of decay 

α  are given, respectively, as ]0/Core/0[ , 05.0Δ  , (MPa)766.10 sq , (KPa)1010 q , 

(sec)001372.0pt , and  5.0α . It is also assumed that the time of arrival, 0at  or that the 

time of the blast begins at 0t .   

   The present results begin with Fig. 4 and 5. depicting the effect of the transverse modulus of 

the core on the global and wrinkling response of the sandwich panel. It should be clarified that 

the terms global and wrinkling response will be refered to throughout the analysis of the results. 

The global response is a measure given by the average of the top and bottom face sheet 

deflection-time histories and is measured by )(twa
mn . While, the wrinkling (local) response gives 

a measure of half of the difference between the top and bottom face sheets with regards to the 

deflection-time histories, )(twd
mn . It should be noted that in the case of the incompressible core, 

0)( twd
mn . Also, in sandwich structural applications the goal from a design standpoint is to 

contain or limit the amount of wrinkling that occurs within the structure. With this in mind, It is 

revealed, in Figs. 4 and 5, that for larger values of the young’s modulus of the core the effect on 

the global response is minimal. Whereas, for the case of the wrinkling response in Fig. 5, the 

effects upon the deflection-time histories appears to be more beneficial as a result of the 

decreased amplitudes of deflection.  

   In Fig. 6, it can be seen that for larger rates of decay that the global deflection-time history 

response remains for longer periods of time within the negative phase or suction phase of the 

blast pulse. In Fig 7, which is the counterpart of Fig. 6 for the case of the wrinkling response it is 

shown that a similar trend is observed as in Fig. 6. In addition, it appears that the frequencies are 

larger for both cases as the rate of decay is increased.   
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   Fig. 8 shows that global deflection-time response is enhanced with the thicker core from the 

standpoint of decreased amplitudes of deflection. Also the frequency of the deflection-time 

response begins to grow out of phase with the thinner core revealing a larger frequency of 

oscillation. The same behavior can be seen in Fig. 9 which is the counterpart of Fig. 8 concerned 

with the wrinkling response.  

    Fig. 10 presents the effect of the stacking sequences and the increase in thickness of the 

facings. It can be seen that the cross-ply layup coupled with an increase in the face thickness 

greatly enhances the structural response. It is also observed that the cross-ply layup with 

increased thickness is a little out of phase with the orthotropic single layered facings. The same 

analysis also holds true for the wrinkling response. It appears that for the cross-ply layup with 

increased face thickness, that the wrinkling response is only marginally or negligibly affected. 

   In Figs. 12 and 13, it can be seen that the global response is more sensitive to the core 

transverse modulus ratio than the wrinkling response in Fig 13.  

9. Concluding Remarks 

The governing theory of asymmetric sandwich plates with a first-order compressible core 

impacted by a Friedlander-type of blast has been presented and simplified for the case of 

symmetric cross-ply and single-layered orthotropic facings. In all cases, it was mentioned that all 

four edges are simply supported and freely movable.  Results were then presented for this 

simplified case and validated against results found in the literature from R. S. Alwar et al. [1].  It 

was found that for the incompressible core case that there was close agreement among the 

results. In regards to the compressible core case, no appropriate results have been found in the 

literature for the theory presented in this paper for the simply supported case with all edges freely 

movable. The effect of a number of important geometrical and material parameters were 
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analyzed with conclusions drawn. Some of the important conclusions were that wrinkling 

response seems to be diminished as the young’s modulus of the core is increased. The same is 

the case for larger rates of decay. Also, for thicker cores, both the global and wrinkling responses 

are less severe. It was also revealed that the compressibility of the core has only a marginal effect 

upon the global response of the sandwich plate. Finally, the cross-ply type layup when compared 

with single-layered facings seemed to have a large effect on the global response and less effect 

on the wrinkling response.  

   One should keep in mind that both the stress and strain profiles should be determined to 

determine possible failure of the structure. 
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Appendix A. Strain-Displacement Components 
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Appendix B. Constants 
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Appendix C. Elastic Coefficients 
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Figure Captions 

Fig. 1 A depiction of an asymmetric sandwich plate under an in-air Friedlander explosion. 

Fig. 2 Incident profile of the pressure-time relationship for a Friedlander-type blast. 

Fig. 3 The nondimensional global deflection-time response for the case of an incompressible 

core impacted by a uniform pressure pulse 

Fig. 4  The effect of the transverse modulus of the core on the global response of a sandwich 

plate with orthotropic facings. 

Fig. 5 The counterpart of Fig. 4 for the wrinkling response of a sandwich plate. 

Fig. 6 The effect of the rate-of-decay parameter on the global response of a sandwich plate with 

orthotropic facings. 

Fig. 7 The counterpart of Fig. 6 for the wrinkling response. 

Fig. 8  The effect of the core thickness on the global deflection-time history of a sandwich plate 

with orthotropic facings. 

Fig. 9 The counterpart of Fig. 8 for the wrinkling response. 

Fig. 10 The effect of the stacking sequence of the facings on the global response of a sandwich 

plate. 

Fig. 11  The counterpart of Fig. 12 for the wrinkling response. 

Fig. 12 The effect of the core shear modulus ratio on the deflection-time history of cross-ply 

laminated sandwich plate. 

Fig. 13 The counterpart of Fig. 12 for the wrinkling response. 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 

 



UNCLASSIFIED: Dist A. Approved for public release 

 

UNCLASSIFIED: Dist A. Approved for public release 

 

 

Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 
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Fig. 12 
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